Расчет тепловой мощности радиаторов

Как рассчитать мощность отопительных батарей для частного дома

Допустим, вы подобрали отопительные приборы по типу и дизайну. Следующий шаг – расчет радиаторов отопления для каждой комнаты частного дома, включающий определение тепловой мощности и количества секций (или размера панелей). Простейший вариант – воспользоваться онлайн-калькулятором любого строительного портала. Но результаты вычислений желательно перепроверить, иначе за ошибки придется расплачиваться позже. Предлагаем рассчитать теплоотдачу батарей отопления вручную, проверенным и удобным способом.

Исходные данные для вычислений

Расчет тепловой мощности батарей выполняется для каждого помещения отдельно, в зависимости от числа внешних стен, окон и наличия входной двери с улицы. Чтобы правильно рассчитать показатели теплоотдачи радиаторов отопления, ответьте на 3 вопроса:

  1. Сколько тепла необходимо на обогрев жилой комнаты.
  2. Какую температуру воздуха планируется поддерживать в конкретном помещении.
  3. Средняя температура воды в отопительной системе квартиры либо частного дома.

Примечание. Если в коттедже смонтирована однотрубная разводка, придется делать поправку на остывание теплоносителя — добавлять секции к последним радиаторам.

Ответ на первый вопрос — как рассчитать потребное количество тепловой энергии различными способами, дается в отдельном руководстве – расчет нагрузки на отопительную систему. Приведем 2 упрощенных методики вычислений: по площади и объему комнаты.

Распространенный способ — измерить обогреваемую площадь и выделить на квадратный метр 100 Вт теплоты, иначе — 1 кВт на 10 м². Мы предлагаем уточнить методику – учесть количество световых проемов и наружных стен:

  • для комнат с 1 окном или входной дверью и одной внешней стенкой оставить 100 Вт тепла на метр квадратный;
  • угловое помещение (2 наружных ограждения) с 1 оконным проемом – считать 120 Вт/м²;
  • то же, 2 световых проема – 130 Вт/м².

Важное условие. Расчет дает более-менее правильные результаты при высоте потолков до 3 м, здание построено в средней полосе умеренного климата. Для северных регионов применяется повышающий коэффициент 1.5…2.0, южных – понижающий 0.7—0.8.

При высоте перекрытия более 3 метров (например, коридор с лестницей в двухэтажном доме) расход тепла правильнее считать по кубатуре:

  • комната с 1 окном (внешней дверью) и единственной наружной стеной – 35 Вт/м³;
  • помещение окружено другими комнатами, не имеет окон, либо находится на солнечной стороне – 35 Вт/м³;
  • угловая комната с 1 оконным проемом – 40 Вт/м³;
  • то же, с двумя окнами – 45 Вт/м³.

На второй вопрос ответить проще: комфортная для проживания температура лежит в диапазоне 20…23 °C. Нагревать воздух сильнее неэкономично, слабее – холодно. Среднее значение для расчетов – плюс 22 градуса.

Оптимальный режим работы котла подразумевает нагрев теплоносителя до 60—70 °C. Исключение – теплые либо слишком холодные сутки, когда температуру воды приходится снижать или, наоборот, увеличивать. Количество таких дней невелико, поэтому средняя расчетная температура системы принимается равной +65 °C.

В комнатах с высокими потолками считаем расход теплоты по объему

Паспортная и реальная теплоотдача радиатора

Параметры любого отопительного прибора указываются в техническом паспорте. Обычно производители заявляют мощность 1 стандартной секции межосевым размером 500 мм в пределах 170…200 ватт. Характеристики алюминиевых и биметаллических радиаторов примерно одинаковы.

Фокус в том, что паспортный показатель теплоотдачи нельзя тупо использовать для подбора числа секций. Согласно п. 3.5 ГОСТ 31311-2005, фирма-изготовитель обязана указывать мощность батареи при следующих условиях эксплуатации:

  • теплоноситель движется через радиатор сверху вниз (диагональное либо боковое подключение);
  • температурный напор составляет 70 градусов;
  • расход воды, протекающей через прибор, равен 360 кг/час.

Справка. Тепловой напор – разница между средней температурой сетевой воды и воздуха помещения. Обозначается ΔT, DT или dt, вычисляется по формуле:

Поясним суть проблемы, для этого подставим в формулу известные значения ΔT = 70 °C и температуры помещения – плюс 20 °C, произведем обратный расчет:

  1. tподачи + tобратки = (ΔT + tвоздуха) х 2 = (70 + 20) х 2 = 180 °C.
  2. Согласно нормативам, расчетная разница температур теплоносителя между подающей и обратной линией должна составлять 20 градусов. Значит, идущую от котла воду нужно нагреть до 100 °C, обратная остынет до 80 °C.
  3. Режим работы 100/80 °C недоступен бытовым отопительным установкам, максимальный нагрев составляет 80 градусов. Вдобавок поддерживать указанную температуру теплоносителя невыгодно экономически (вспомните, мы взяли средний показатель 65 °C).

Вывод. В реальных условиях батарея отдаст гораздо меньше теплоты, нежели прописано в инструкции по эксплуатации. Причина – меньшее значение ΔT – разницы температур воды и окружающего воздуха. По нашим исходным данным, показатель ΔT равен 130 / 2 — 22 = 43 градуса, почти вдвое ниже заявленной нормы.

Определяем число секций алюминиевой батареи

Пересчитать параметры отопительного прибора под конкретные условия непросто. Формула тепловой мощности и алгоритм вычислений, используемый инженерами–проектировщиками, слишком сложен для обычных домовладельцев, несведущих в теплотехнике.

Предлагаем выполнить расчет количества секций радиаторов отопления более доступным методом, дающим минимальную погрешность:

  1. Соберите исходные данные, перечисленные в первом разделе настоящей публикации, — узнайте необходимое для обогрева количество теплоты, температуру воздуха и теплоносителя.
  2. Рассчитайте реальный температурный напор DT, пользуясь приведенной выше формулой.
  3. При выборе определенного типа батарей откройте технический паспорт и отыщите показатель теплоотдачи 1 секции при DT = 70 градусов.
  4. Ниже представлена таблица готовых коэффициентов пересчета отопительной мощности радиаторных секций. Найдите показатель, соответствующий реальному DT, и умножьте его на величину паспортной теплоотдачи – получите мощность 1 ребра при ваших эксплуатационных условиях.

Зная настоящий тепловой поток, нетрудно выяснить число ребер батареи, требуемое для обогрева комнаты. Разделите нужное количество теплоты на отдачу 1 секции. Для ясности приведем пример расчета:

  1. Возьмем угловую комнату с двумя светопрозрачными конструкциями (окнами) площадью 15.75 м², высота потолков – 280 см (показана на фрагменте чертежа). Удельные затраты теплоты на обогрев – 130 Вт/м², общая потребность составит 130 х 15.75 = 2048 Вт.
  2. Величину теплового напора мы выяснили в предыдущем разделе, DT = 43 °C.
  3. Подбираем низенькие алюминиевые радиаторы GLOBAL VOX 350 (межосевое расстояние – 350 мм). Согласно документации изделия, теплоотдача 1 ребра составляет 145 Вт (DT = 70 °C).
  4. Находим в таблице коэффициент, соответствующий DT = 43 °C, K = 0.53.
  5. Умножаем паспортную мощность на коэффициент и находим реальную отдачу 1 секции: 0.53 х 145 = 76.85 Вт.
  6. Рассчитываем количество алюминиевых ребер на помещение: 2048 / 76.85 ≈ 26.65, округляем в бо́льшую сторону и получаем 27 штук.

Остается распределить секции по комнате. Если размеры окон одинаковы, делим 28 пополам и размещаем под каждым проемом радиатор на 14 ребер. В противном случае число секций батареи подбирается пропорционально ширине окон (можно приблизительно). Аналогичным образом пересчитывается теплоотдача биметаллических и чугунных радиаторов.

Схема расстановки батарей — приборы лучше размещать под окнами либо возле холодной наружной стены

Совет. Если вы владеете персональным компьютером, проще использовать расчетную программу итальянского бренда GLOBAL, размещенную на официальном ресурсе производителя.

Многие известные фирмы, в том числе GLOBAL, прописывают в документации теплоотдачу своих приборов для разных температурных условий (DT = 60 °C, DT = 50 °C), пример показан в таблице. Если ваш реальный ΔT = 50 градусов, смело пользуйтесь указанными характеристиками безо всякого перерасчета.

Расчет размера стального радиатора

Конструкция панельных приборов отличается от секционных. Батареи делаются из штампованных стальных листов толщиной 1…1.2 мм, заранее обрезанных в нужный размер. Чтобы подобрать радиатор требуемой мощности, нужно выяснить теплоотдачу 1 метра длины сваренной из листов панели.

Предлагаем воспользоваться простейшей методикой, основанной на технических данных серьезного немецкого производителя панельных водяных радиаторов Kermi. В чем суть: штампованные батареи унифицированы, типы изделий отличаются между собой количеством греющих панелей и теплообменных оребрений. Классификация радиаторов выглядит так:

  • тип 10 – однопанельный прибор без дополнительных ребер;
  • тип 11 – 1 панель + 1 лист гофрированного металла;
  • тип 12 – две панели плюс 1 лист оребрения;
  • тип 20 – батарея на 2 греющих пластины, конвекционное оребрение не предусмотрено;
  • тип 22 – двухпанельный радиатор с 2 листами, увеличивающими площадь теплообмена.

Эскизы стальных обогревателей различных типов — вид сверху

Примечание. Также существуют обогреватели типа 33 (3 панели + 3 ребра), но подобные изделия менее востребованы ввиду повышенной толщины и цены. Самая «ходовая» модель – тип 22.

Итак, панельные штампованные приборы любого бренда отличаются только монтажными габаритами. Расчет радиаторов отопления сводится к выбору подходящего типа, затем по высоте и теплоотдаче вычисляется длина батареи для конкретного помещения. Алгоритм следующий:

  1. Определите исходные данные, перечисленные в начале статьи.
  2. Выберите тип и высоту отопительного прибора. Самый распространенные варианты – изделия высотой 30, 40 и 50 см, тип 22.
  3. Воспользуйтесь представленной таблицей, где указана теплоотдача q (Вт/1 м. п.) радиаторов Kermi разных типов и размеров в зависимости от условий эксплуатации. Начните с левого столбца – отыщите соответствующую температуру комнаты, потом – теплоносителя, дальше высоту и тип батареи. В ячейке на пересечении строки и столбца найдете мощность 1 метра радиатора.
  4. Количество энергии, нужной для обогрева, разделите на величину q – узнаете метраж радиатора заданной высоты.
  5. По каталогу подберите прибор водяного отопления соответствующей длины. При необходимости (например, батарея вышла чересчур длинной) разбейте этот размер на 2—3 прибора.

Пример расчета. Определим габариты стального радиатора для той же комнаты 15.75 м²: теплопотери — 2048 Вт, температура воздуха – 22 градуса, теплоносителя – 65 °C. Возьмем стандартные батареи высотой 500 мм, тип 22. По таблице находим q = 1461 Вт, выясняем общую длину панели 2048 / 1461 = 1.4 м. Из каталога любого производителя выбираем ближайший больший вариант – обогреватель длиной 1.5 м либо 2 прибора по 0.7 м.

Окончание первой таблицы — теплопередача 1 м длины радиаторов «Керми»

Совет. Наша инструкция на 100% верна для изделий компании Kermi. При покупке радиаторов другого бренда (особенно, китайского) длину панели стоит принимать с запасом 10—15%.

Отопительные приборы однотрубных систем

Важная особенность горизонтальной «ленинградки» — постепенное снижение температуры в основной магистрали из-за подмеса охлажденного батареями теплоносителя. Если 1 кольцевая линия обслуживает более 5 приборов, разница в начале и конце раздающей трубы может достигать 15 °C. Результат – последние радиаторы выделяют меньше теплоты.

Однотрубная схема закрытого типа — все обогреватели подключены к 1 трубе

Чтобы дальние батареи передавали помещению нужное количество энергии, при расчете отопительной мощности сделайте следующие поправки:

  1. Первые 4 радиатора подбирайте согласно вышеприведенным инструкциям.
  2. Мощность 5-го прибора увеличьте на 10%.
  3. К расчетной теплоотдаче каждой последующей батареи прибавляйте еще 10 процентов.

Пояснение. Мощность 6-го радиатора повышается на 20%, седьмого – на 30 и так далее. Зачем наращивать последние батареи однотрубной «ленинградки», подробно расскажет эксперт на видео:

Напоследок несколько уточнений

Приборы отопления могут работать в различных условиях, подключаться по разным схемам. Эти факторы оказывают влияние на теплоотдачу обогревателей в режиме эксплуатации. Определяя мощность комнатных радиаторов, учтите несколько рекомендаций:

  1. Если батарея подключается к трубопроводам по разносторонней нижней схеме, эффективность обогрева ухудшается. Добавьте к расчетному показателю мощности приборов 10%.
  2. В комбинированных системах (радиаторная сеть + теплые водяные полы) конвекционные приборы играют вспомогательную роль. Основную отопительную нагрузку несут напольные контуры. Но расчетную теплоотдачу радиаторов занижать не следует, при нужде батареи должны полностью заменить теплые полы.
  3. Домовладельцы нередко закрывают обогреватели декоративными экранами, даже зашивают гипсокартоном, оставляя конвекционные щели. В данном случае полностью теряется инфракрасное тепло, выделяемое нагретой поверхностью прибора. Соответственно, мощность батареи придется увеличить минимум на 40%.
  4. Не устанавливайте 1—3 радиаторных секции, даже если по расчету вышло такое количество. Чтобы получить нормальный обогревательный прибор, нужно смонтировать минимум 4 ребра.
  5. Незамерзающие жидкости уступают обычной воде по теплоемкости, разница составляет примерно 15%. При использовании антифризов наращивайте теплообменную площадь батарей на 10% (увеличивайте количество секций радиаторов либо размеры панелей).

При расчете радиаторов отопления учитывайте простое правило: чем ниже температура воды в подающей линии, тем большая площадь теплообменной поверхности нужна для обогрева комнат. Правильно подбирайте котельное оборудование и монтируйте системы, чтобы не приходилось решать проблемы путем наращивания батарейных секций.

Читайте также:  Пробный пуск системы

Как рассчитать мощность радиатора отопления – делаем расчет мощности правильно

Когда проектируется система теплоснабжения для частного дома или квартиры, расположенной в новостройке, необходимо знать, как рассчитать мощность радиаторов отопления, чтобы определить требуемое количество секций для каждой комнаты и подсобных помещений. В статье приводится несколько несложных вариантов вычислений.

Особенности проведения расчетов

Многих владельцев недвижимости волнует, что неправильно рассчитанная тепловая мощность радиаторов отопления может привести к тому, что в морозы в доме будет холодно, а в теплую погоду придется держать нараспашку форточки целый день и таким образом отапливать улицу (детальнее: “Расчет мощности батарей отопления – как рассчитать самому”).

Однако имеется понятие, которое называется температурный график. Благодаря чему температура теплоносителя в отопительной системе меняется в зависимости от погоды на улице. По мере того, как будет расти температура воздуха на улице, повышается теплоотдача каждой из секций батареи. А раз так, то относительно любого отопительного оборудования можно говорить о средней величине теплоотдачи.

Что касается жильцов частных домовладений, то после установки современного электрического или газового теплоагрегата или отопления с применением тепловых насосов они не должны волноваться о том, какую температуру имеет теплоноситель, циркулирующий в контуре отопительной конструкции.

Созданное с применением новейших технологий тепловое оборудование позволяет управлять им при помощи термостатов и корректировать мощность батарей в соответствии с потребностями. Наличие современного котла не требует контроля над температурой теплоносителя, но, чтобы установить радиаторы отопления расчет мощности все равно потребуется.

Порядок расчета мощности радиаторов отопления

Все расчеты, связанные с обустройством отопительной конструкции, неразрывно связаны с таким понятием как тепловая мощность. Вариантов как рассчитать мощность радиатора отопления существует несколько. При этом следует отметить, что у приборов от известных и хорошо себя зарекомендовавших производителей данный параметр всегда указывается в прилагаемых к ним документах (прочитайте также: “Как рассчитать отопление в доме правильно”).

У таких агрегатов, как электрический конвектор, тепловентилятор, масляный радиатор или инфракрасная керамическая панель тепловая мощность соответствует их электрической мощности (читайте также: “Что выбрать конвектор или масляный радиатор”). При создании системы отопления, где используется жидкий теплоноситель, не обойтись без батарей.

У чугунных, алюминиевых или биметаллических отопительных приборов мощность одной секции радиатора отопления составляет от 140 до 220 ватт. Усредненным значением считается значение 200 ватт, которое батарея отдает при разнице температур между теплоносителем и воздухом в помещении, равным 70 градусам. Читайте также: “Расчет количества секций биметаллических радиаторов”.

Чтобы выполнить расчет биметаллических отопительных радиаторов или чугунных батарей, исходя из тепловой мощности, необходимо разделить требуемое количество тепла на величину 0,2 КВт. В результате будет получено количество секций, которые нужно приобрести, чтобы обеспечить обогрев комнаты (детальнее: “Правильный расчет тепловой мощности системы отопления по площади помещения”).

Если чугунные радиаторы (см. фото) не имеют промывочных кранов специалисты рекомендуют принимать в расчет 130-150 ватт на каждую секцию, учитывая мощность 1 секции чугунного радиатора. Даже когда они первоначально отдают тепла больше, чем требуется, появившиеся в них загрязнения понизят теплоотдачу.

Как показала практика, батареи желательно монтировать с запасом около 20%. Дело в том, что при наступлении экстремальных холодов чрезмерной жары в доме не будет. Также поможет бороться с повышенной теплоотдачей дроссель на подводке. Покупка лишних нескольких секций и регулятора не сильно отразится на семейном бюджете, а тепло в доме в морозы будет обеспечено.

Необходимая величина тепловой мощности радиатора

При расчете отопительной батареи непременно нужно знать требуемую тепловую мощность, чтобы в доме было комфортно жить. Как рассчитать мощность радиатора отопления или других отопительных приборов для теплоснабжения квартиры или дома, интересует многих потребителей.

  1. Способ согласно СНиП предполагает, что на один «квадрат» площади требуется 100 ватт.

    Но в данном случае следует учитывать ряд нюансов:

    – теплопотери зависят от качества теплоизоляции. Например, для обогрева энергоэффективного дома, оборудованного системой рекуперации тепла со стенами, сделанными из сип-панелей, потребуется тепловая мощность меньше, чем в 2 раза;
    – создатели санитарных норм и правил при их разработке ориентировались на стандартную высоту потолка 2,5-2,7 метра, а ведь этот параметр может равняться 3 или 3,5 метра;
    – этот вариант, позволяющий рассчитать мощность радиатора отопления и теплоотдачу, верен только при условии примерной температуры 20°C в квартире и на улице – 20°C. Подобная картина типична для населенных пунктов, расположенных в европейской части России. Если дом находится в Якутии, тепла потребуется гораздо больше.

  2. Способ расчета, исходя из объема, не считается сложным. Для каждого кубометра помещения требуется 40 ватт тепловой мощности. Если размеры комнаты составляют 3х5 метра, а высота потолка 3 метра, тогда потребуется 3х5х3х40 = 1800 ватт тепла. И хотя погрешности, связанные с высотой помещений в этом варианте расчетов устранены, он все еще не является точным.
  3. Уточненный способ расчета по объему с учетом большего количества переменных дает более реальный результат. Базовым значением остаются все те же 40 ватт на один кубометр объема. Читайте также: “Как сделать расчет радиаторов отопления на квадратный метр – правила и способы расчета количества секций”.

    Когда производится уточненный расчет тепловой мощности радиатора и требуемой величины теплоотдачи, следует учитывать, что:

    – одна дверь наружу отнимает 200 ватт, а каждое окно – 100 ватт;
    – если квартира угловая или торцевая, применяется поправочный коэффициент 1,1 – 1,3 в зависимости от вида материала стен и их толщины;
    – для частных домовладений коэффициент составляет 1,5;
    – для южных регионов берут коэффициент 0,7 – 0,9, а для Якутии и Чукотки применяют поправку от 1,5 до 2.

В качестве примера для проведения расчета взята угловая комната с одним окном и дверью в частном кирпичном доме размером 3х5 метров с трехметровым потолком на севере России. Средняя температура за окном зимой в январе составляет – 30,4°C. Читайте также: “Как сделать расчет радиаторов отопления правильно – точный способ”.

Порядок вычислений следующий:

  • определяют объем помещения и требуемую мощность – 3х5х3х40 = 1800 ватт;
  • окно и дверь увеличивают результат на 300 ватт, итого получают 2100 ватт;
  • с учетом углового расположения и того, что дом частный будет 2100х1,3х1,5 = 4095 ватт;
  • прежний итог умножают на региональный коэффициент 4095х1,7 и получают 6962 ватт.

Видео о выборе радиаторов отопления с расчетом мощности:


Калькулятор расчета количества секций радиаторов

Информация по назначению калькулятора

К алькулятор радиаторов отопления предназначен для расчета количества секций радиатора, обеспечивающих необходимый тепловой поток, возмещающий теплопотери рассчитываемого помещения и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и/или требованиям технологического процесса. Расчет производится с учетом теплопотерь ограждающих конструкций, а также особенностей системы отопления.

В опросы отопления являются основополагающими как для частного хозяйства, так и квартир в многоэтажном доме. Особенно они актуальны для РФ, большая часть территории которой находится в зоне пониженных температур. Для создания оптимальных и благоприятных температурных условий в помещениях разрабатывается множество материалов с усиленными теплоизоляционными свойствами.

К аждый год на рынках появляются высокотехнологичные и эффективные системы теплоснабжения. Но особое внимание всегда уделяется радиаторам, поскольку они являются конечным звеном в отопительной цепи. Отдаваемое ими тепло служит главным критерием работы всей системы теплоснабжения.

Н есмотря на важность роли, которая отведена радиаторам отопления, они остаются самыми консервативными элементами в строительной индустрии. Инновационные нововведения в этой сфере появляются редко, хотя исследователи постоянно работают над совершенствованием конструкций изделий. В современном тепловом обеспечении зданий и сооружений используется 4 основных типов, и данный калькулятор подскажет как рассчитать сколько необходимо радиаторов отопления на 1 м2.

И х классификация предопределяется материалами изготовления, в соответствии с которыми они подразделяются на:

  • Стальные
  • Чугунные
  • Алюминиевые
  • Биметаллические

С тальные радиаторы подразделяются на панельные и трубчатые. Панельные, именуемые также конвекторами, обладают КПД, достигающим 75%. Это высокий показатель эффективной работы всей системы. Другое их достоинство – дешевизна. Панели обладают малой энергетической емкостью, что позволяет снижать расходы теплового носителя. К недостаткам относится низкая стойкость против коррозии после слива воды.

И зделия просты в эксплуатации. По мере необходимости нагревательные панели могут легко наращиваться до 33 штук. Относительно низкая стоимость делает их самыми распространенными продуктами в модельном ряду.

Р оссийские бренды сейчас занимают лидирующие позиции на внутреннем рынке. Импорт зарубежной продукции достаточно дорогой, а российские производители уже наладили выпуск панельных систем радиаторов, которые по качеству не уступают зарубежным аналогам.

Т рубчатые системы радиаторов по конструкции состоят из стальных труб, в которых циркулирует теплоноситель. Данные приборы достаточно технологически сложны для промышленного производства. Это сказывается на цене конечной продукции.

Т рубчатые радиаторы полностью сохраняют все преимущества панельных, но по сравнению с ними имеют более высокое рабочее давление 9-16 бар против 7-10 бар. По показателям тепловой мощности (120 – 1600 Вт) и максимальной температуре нагрева воды (120 градусов) обе модели сопоставимы друг с другом. Если вы не знаете как правильно рассчитать количество радиаторов, воспользуйтесь онлайн калькулятором.

А люминиевые отопительные приборы изготовлены из одноименного материала или его сплавов. Подразделяются они на литые и экструзионные. Эта разновидность чаще всего применяется в системах автономного теплоснабжения в индивидуальных хозяйствах. Для централизованного отопления данный вид не подходит, так как чувствителен к качеству теплоносителя. Они могут быстро выйти из строя, если в воде есть агрессивные примеси и не выдерживают сильных давлений.

Р адиаторы, изготовленные путем литья, отличаются широкими каналами для теплоносителя и упрочненными стенками увеличенной толщины. Имеют несколько секций, число которых можно увеличивать или снижать.

Э кструзионный метод изготовления приборов основан на механическом выдавливании элементов из алюминиевого сплава. Весь процесс относительно дешевый, но конечный продукт имеет цельный вид. Количество секций не подлежит изменению.

А люминиевые радиаторы обладают очень высокой теплоотдачей, быстро нагревают помещение и просты при монтаже, так как имеют небольшой вес. Но алюминий вступает в химические реакции с теплоносителем, поэтому ему требуется хорошо очищенная вода. Слабое место – стыковки секций с трубными соединениями. Со временем возможны протечки. Они не ударопрочные. По давлению, температурному режиму и другим характеристикам коррелируют со стальными радиаторами.

Ч угунные радиаторы являются самым традиционным элементом теплоснабжения. За долгие годы они практически не видоизменялись, но сохранили свою популярность и просты по форме и дизайну. Долговечны, надежны, хорошо держат тепло. Могут долго сопротивляться коррозии и воздействию химических реагентов. По температурному режиму не уступают другим приборам аналогичной комплектации. По давлению и мощности – превосходят, но сложны в установке и транспортировке.

Б иметаллические устройства обычно имеют трубчатый стальной сердечник и алюминиевый корпус. Такие отопительные устройства выдерживают высокое давление. В целом, они отличаются повышенной надежностью и прочностью. При низкой инерционности обладают высокой теплоотдачей и низким расходом воды, не боятся гидравлических ударов. По базовым показателям в 1,5-2 раза превосходят аналогичные устройства. Главный недостаток – высокая цена.

Общие сведения по результатам расчетов

  • К оличество секций радиатора – Расчетное кол-во секций радиатора, с обеспечением необходимого теплового потока для достаточного обогрева помещения при заданных параметрах.
  • К ол-во тепла, необходимое для обогрева – Общие теплопотери помещения с учетом особенностей данного помещения и особенностей функционирования системы отопления.
  • К ол-во тепла, выделяемое радиатором – Общий тепловой поток от всех секций радиатора, выделяемый в помещение при заданной температуре теплоносителя.
  • К ол-во тепла, выделяемое одной секцией – Фактический тепловой поток, выделяемый одной секцией радиатора с учетом особенностей системы отопления.

Калькулятор работает в тестовом режиме.

Расчет тепловой мощности радиаторов

Как уже неоднократно упоминалось, что тепло, передаваемое радиаторами воздуху помещения, должно компенсировать теплопотери помещения и в упрощенном виде это соответствует тому, что на каждые 10 м² площади помещения нужно устанавливать радиаторы тепловой мощностью не менее 1 кВт. На практике, этот показатель увеличивают еще на 15%, т. е. полученную мощность радиаторов умножают на коэффициент 1,15. Существуют более точные расчеты необходимой мощности радиаторов, которыми руководствуются специалисты, но для грубой оценки и предложенного метода достаточно. При этом методе расчета радиаторы могут оказаться чуть большей мощности, чем необходимо, но зато возрастет качество отопительной системы, при котором возможна более точная настройка и низкотемпературный режим отопления.

При покупке радиаторов в магазинах в паспортах технических характеристик тепловая мощность может быть указана в киловаттах или по расходу теплоносителя. Если указан расход теплоносителя, то мы уже знаем, что расход теплоносителя равный 1 л/мин примерно соответствует мощности в 1 кВт.

Обычно в паспорте отопительного прибора указаны размеры радиатора в миллиметрах. В настоящее время в продаже радиаторы бывают высотой 60, 50, 40, 30 и 20 см, приборы высотой 20 см и менее называют плинтусными. Высота 60 см — традиционная высота старых чугунных радиаторов, и новые радиаторы высотой 60 см хороши для их простой замены. Сейчас чаще используют радиаторы высотой 50 см, так как в архитектуре все чаще используются высокие окна и низкие подоконники, а при установке радиатора под окно нужно выдержать нормативный зазор между подоконной доской и радиатором не менее 5 см, а расстояние между полом и радиатором должно быть не менее 6 см. Низкие радиаторы выглядят компактнее, но при одинаковой мощности будут длиннее, а размеры помещения не всегда позволяют установить более длинные радиаторы.

В паспорте радиатора рядом с мощностью, например, 1905 Вт, указываются цифры расчетного перепада температуры, например, 70/55. Это означает, что при охлаждении с 70 до 55 градусов радиатор со своей поверхности отдает 1905 Вт тепловой мощности. Однако многие продавцы указывают мощность своих радиаторов только для перепада 90/70. При использовании таких радиаторов для среднетемпературных систем отопления с перепадом 70/55 мощность теплоотдачи такого радиатора будет меньше заявленного в паспорте. Поэтому при выборе радиаторов для средне- и низкотемпературных (55/45) систем отопления их фактическую мощность нужно пересчитывать.

Мощность отопительного прибора определяется по формуле:

Q = k×A×ΔT , где
k — коэффициент теплопередачи отопительного прибора, Вт/м² °С;
А — площадь теплопередающей поверхности отопительного прибора, м²;
ΔT — температурный напор, °С (рис. 82).

Из паспортных данных на радиатор нам известна мощность радиатора (Q) и температурный напор (ΔT), соответствующий данной мощности. Подставляя эти значения в формулу, определяем произведение k×A. Теперь известны все составляющие формулы, подставляя значение ΔT равное 50 или 30°С, соответствующее средне- и низкотемпературным системам отопления, находим мощность данного радиатора для этих систем. Более того, мощность радиаторов можно пересчитать на свой температурный напор (ΔT), если вас по каким-либо причинам не устраивают нормативные величины 50 и 30°С, используя для этого формулу на рисунке 82.

Например, нам нужно выбрать радиаторы для комнаты площадью 16 м². Для отопления такой площади нужны радиаторы мощностью 1,6 кВт, умножаем это число на коэффициент 1,15 и получаем 1,84 кВт. Приходим в магазин и выбираем радиатор подходящий нам по размеру и мощности, предположим, что мы находим такой отопительный прибор, в паспортных данных которого обозначена мощность 1905 Вт (1,9 кВт). Изучая паспортные данные, находим, что указанную мощность этот радиатор может выдать только при температурном напоре 60°С (90/70). Следовательно, при проектировании низкотемпературной системы отопления (ΔT=30°С) с качественной регулировкой температуры теплоносителя, например, с применением трехходовых смесителей в режиме (55/45), мощность предлагаемого радиатора нужно пересчитать. По формуле или паспортным данным находим величину произведения k×A = 31,75 Вт/°С и вставляем обновленные данные в формулу определения мощности. Q = k×A×ΔT = 31,75×30 = 956 Вт, что составляет примерно 50% от нужной нам мощности. Дальше можно поступить несколькими способами: купить вместо одного два радиатора; рассчитать мощность одной секции радиатора и на основании этого расчета подобрать радиатор с нужным количеством секций; поискать другие радиаторы, удовлетворяющие нашим требованиям. Необходимо добавить, что при покупке радиаторов для низкотемпературных отопительных систем (ΔT = 30°С), в паспортных данных которых указан температурный напор 60°С, результат всегда будет один — количество секций радиаторов должно быть удвоено. В других случаях, когда в паспорте указаны другие температурные напоры или к расчетному температурному напору у вас свои требования, мощность радиаторов нужно пересчитать.

На отдачу тепла от радиаторов в помещение влияют также место размещения радиатора в комнате и способ его подключения к трубопроводам.

Радиаторы размещают прежде всего под световыми проемами. Какие бы сверхсовременные стеклопакеты не стояли в оконных рамах, окно — это всегда место наибольших теплопотерь. Размещенный под окном радиатор нагревает воздух вокруг себя. Поднимаясь вверх, горячий воздух создает перед окном тепловую завесу, препятствующую распространению холода от окна. Кроме того, холодный воздух от окна тут же перемешивается с теплым воздухом, поднимающимся от радиатора, и усиливает конвекцию во всем помещении, способствуя более быстрому прогреванию всего воздуха помещения. Желательно, чтобы радиаторная «гармошка» была длиной во всю ширину окна, в крайнем случае, не менее 50% длины проемов. Вертикальные оси оконного проема и радиатора совмещают, допустимое отклонение не более 50 мм. В угловых комнатах могут быть размещены дополнительные радиаторы вдоль глухих наружных стен по возможности ближе к наружному углу. При применении стояковых систем отопления стояки нужно размещать в углах помещения, особенно важно разместить стояки в наружных углах угловых комнат. Дело здесь в том, что наружные углы домов подвергаются атаке холодного воздуха, в отличие от стен, с двух сторон. Разместив отопительные стояки в углах, вы обеспечиваете их прогрев с внутренней стороны и резко снижаете вероятность отсыревания и почернения материала стен — развития в углах грибковых порослей.

Отопительные приборы размещают так, чтобы были обеспечены их осмотр, очистка и ремонт. Если применяется ограждение (экран) или декорирование приборов, то в расчет тепловой мощности радиаторов нужно внести коррективы. Мощность приобретаемых радиаторов должна быть рассчитана с поправочным коэффициентом (рис. 83).

рис.83. Изменение мощности теплоотдачи радиаторов в зависимости от способа их установки

Присоединение труб к радиаторам может быть с одной стороны (одностороннее) и с противоположных сторон (разностороннее). При присоединении труб с разных сторон возрастает теплопередача приборов, однако конструктивно рациональнее делать одностороннее присоединение труб. С разных сторон присоединяют радиаторы при числе секций более 20, а также при числе приборов «на сцепке» более одного.

Тепловой поток радиаторов зависит от расположения мест подачи и отвода из них теплоносителя. Теплопередача возрастает при подаче теплоносителя в верхнюю часть и отводе его из нижней части прибора (направление движения сверху вниз) и понижается при направлении движения снизу вверх (рис. 84). При установке отопительных приборов в несколько ярусов по высоте (по этажам) рекомендуется обеспечивать последовательное движение теплоносителя сверху вниз.

рис.84. Изменение мощности теплоотдачи радиаторов в зависимости от способа присоединения к ним труб

Индивидуальное регулирование теплопередачи отопительных приборов может быть ручным и автоматическим. Термостатные вентили регулируют пропуск теплоносителя таким образом, что достигают наилучших показателей теплообмена на всех участках теплового прибора.

Простейший расчет мощности радиаторов отопления

Проблема отопления в наших широтах стоит значительно острее, чем в Европе с ее мягким климатом и теплыми зимами. В России значительная часть территории находится под властью зимы до 9 месяцев в году. Поэтому очень важно уделить достаточное внимание выбору систем отопления и расчету мощности радиаторов отопления.

В отличии от теплых полов, где учитывается только площадь, расчет мощности радиаторов отопления производится по иной схеме. В этом случае следует учитывать также высоту потолков, то есть общий объем помещения, в котором планируется установка или замена системы отопления. Бояться не стоит. В конечном итоге весь расчет строится на элементарных формулах, совладать с которыми не составит труда. Радиаторы будут обогревать помещение благодаря конвекции, то есть циркуляции воздуха в комнате. Нагретый воздух поднимается вверх и вытесняет холодный. В этой статье Вы получите самый простой расчет мощности радиаторов отопления

Пример расчета мощности батарей отопления

Возьмем помещение площадью 15 квадратных метров и с потолками высотой 3 метра.Объем воздуха, который предстоит нагреть в отопительной системе составит:

Далее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае — 45 кубических метров. Для этого необходимо умножить объем помещения на мощность, необходимую для обогрева одного кубического метра воздуха в заданном регионе. Для Азии, Кавказа это 45 вт, для средней полосы 50 вт, для севера около 60 вт. В качестве примера возьмем мощность 45 вт и тогда получим:

45×45=2025 вт — мощность, необходимая для обогрева помещения с кубатурой 45 метров

Выбор радиатора исходя из расчета

Стальные радиаторы

Оставим за скобками сравнение радиаторов отопления и отметим только нюансы, о которых необходимо иметь представление при выборе радиатора для вашей системы отопления.

В случае расчета мощности стальных радиаторов отопления все просто. Есть необходимая мощность для уже известного помещения — 2025 вт. Смотрим по таблице и ищем стальные батареи, выдающие необходимое число Вт. Такие таблицы несложно найти на сайтах производителей и продавцов подобных товаров. Обратите внимание на температурные режимы, при которых будет эксплуатироваться система отопления. Оптимально использовать батарею в режиме 70/50 С.

В таблице указывается тип радиатора. Возьмем тип 22, как один из самых популярных и вполне достойных по своим потребительским качествам. Отлично подходит радиатор размером 600×1400. Мощность радиатора отопления составит 2015 Вт. Лучше брать немного с запасом.

Алюминиевые и биметаллические радиаторы

Алюминиевые и биметаллические радиаторы зачастую продаются секциями. Мощность в таблицах и каталогах указывается для одной секции. Необходимо разделить мощность, необходимую для обогрева заданного помещения на мощность одной секции такого радиатора, например:

Получили необходимое число секций для помещения объемом 45 кубических метров.

Не переборщите!

14-15 секций для одного радиатора — это максимум. Ставить радиаторы по 20 и больше секций неэффективно. В таком случае следует разбивать число секций напополам и устанавливать 2 радиатора по 10 секций. Например, 1 радиатор поставить возле окна, а другой возле входа в комнату или на противоположной стене.

Со стальными радиаторами так же. Если комната достаточно велика и радиатор выходит слишком большой — лучше поставьте два поменьше, но той же суммарной мощности.

Если в комнате того же объема 2 окна или более, то хорошим решением будет установка радиатора под каждым из окон. В случае с секционными радиаторами все довольно просто.

Радиаторы обычно продаются по 10 секций, лучше взять четное число, например 8. Запас в 1 секцию лишним не будет в случае серьезных морозов. Мощность от этого особенно не изменится, однако инерция нагрева радиаторов уменьшится. Это может быть полезно, если в комнату часто проникает холодный воздух. Например, если это офисное помещение, в которое часто заходят клиенты. В таких случаях радиаторы будут нагревать воздух немного быстрее.

Что делать после расчета?

После расчета мощности радиаторов отопления всех комнат, необходимо будет выбрать трубопровод по диаметру, краны. Количество радиаторов, длину труб, количество кранов для радиаторов. Подсчитать объем всей системы и выбрать подходящий для нее котел.

Для человека дом часто ассоциируется с теплом и уютом. Чтобы дом был теплым, необходимо уделить должное внимание системе отопления. Современные производители используют новейшие технологии для производства элементов систем отопления. Однако, без грамотного планирования подобной системы, для определенных помещений эти технологии могут оказаться бесполезны.

В первую очередь необходимо понимать, для каких целей будет использоваться помещение. Какой температурный режим в нем желателен. В этом деле существует множество тонкостей, которые необходимо учитывать. Желательно сделать проект отопления с точным расчетом мощности радиаторов отопления и теплопотерь. Радиаторы отопления лучше устанавливать в той части комнаты, где холоднее всего. В вышеизложенном примере была рассмотрена установка батарей отопления возле окон. Это один из наиболее выгодных и эффективных вариантов размещения элементов отопительной системы.

Теплоотдача радиаторов отопления: сравнение и способы расчета

Главным критерием выбора радиаторов отопления является их теплоотдача. Однако показатель мощности отопительного прибора зависит не только от материала изготовления, но и от формы, конструкции и развитости поверхности. Поэтому каждая модель имеет индивидуальный показатель.

В статье мы рассмотрим способы грамотного расчета необходимой мощности батарей, сравним показатели теплоотдачи различных видов и моделей радиаторов отопления, выделим лучшие и наиболее эффективные из них.

Читайте в статье

Что означает и как рассчитывается показатель теплоотдачи радиаторов отопления

Теплоотдача — это показатель, который обозначает, какое количество тепла радиатор передает воздуху за единицу времени, при определенной температуре теплоносителя в нем (как правило, согласно ГОСТ – при 70°С). Также ее называют тепловой мощностью, измеряется она в Ваттах (Вт). Иногда в паспорте отопительного прибора можно встретить и обозначение «мощность теплового потока», единицами измерения которого являются кал/час: 1 Вт = 859,845 кал/час.

Учитывайте, что в характеристиках может быть указана теплоотдача как 1 секции прибора, так и радиатора в целом, если его продают комплектом из 4,6,8 или 10 секций. При мощности одной секции в 624 Вт, прибор из 4 секций будет иметь мощность 4*624= 2,496 кВт.

Нормы теплоотдачи для отопления помещения

Согласно практике для отопления помещения с высотой потолка не превышающей 3 метра, одной наружной стеной и одним окном, достаточно 1 кВт тепла на каждые 10 квадратных метров площади.

Для более точного расчета теплоотдачи радиаторов отопления необходимо сделать поправку на климатическую зону, в которой находится дом: для северных районов для комфортного отопления 10 м 2 помещения необходимо 1,4-1,6 кВт мощности; для южных районов – 0,8-0,9 кВт. Для Московской области поправки не нужны. Однако как для Подмосковья, так и для других регионов рекомендуется оставлять запас мощности в 15% (умножив расчетные значения на 1,15).

Пример: помещение дома в Подмосковье имеет площадь 34 м 2 , соответственно, требует 34/10 * 1,15 = 3,91 кВт мощности. Если помещение с такой же площадью относится к дому в северном регионе страны, где теплопотери в виду климата значительно выше, для его комфортного обогрева понадобятся радиаторы с теплоотдачей 34/10 * 1,4 * 1,15 = 5,474 кВт.

Существуют и более профессиональные методы оценки, описанные далее, но для грубой оценки и удобства вполне достаточно и этого способа. Радиаторы могут оказаться чуть более мощными, чем минимальная норма, однако при этом качество отопительной системы лишь возрастет: будет возможна более точная настройка температуры и низкотемпературный режим отопления.

Полная формула точного расчета

Подробная формула позволяет учесть все возможные варианты потери тепла и особенности помещения.

Q = 1000 Вт/м2*S*k1*k2*k3…*k10,

  • где Q – показатель теплоотдачи;
  • S – общая площадь помещения;
  • k1-k10 – коэффициенты, учитывающие теплопотери и особенности установки радиаторов.

k1 – к-во внешних стен в помещения (стен, граничащих с улицей):

k2 – ориентация помещения (солнечная или теневая сторона):

  • север, северо-восток или восток – k2=1,1;
  • юг, юго-запад или запад – k2=1,0.

k3 – коэффициент теплоизоляции стен помещения:

  • простые, не утепленные стены – 1,17;
  • кладка в 2 кирпича или легкое утепление – 1,0;
  • высококачественная расчетная теплоизоляция – 0,85.

k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):

  • -35°С и менее – 1,4;
  • от -25°С до -34°С – 1,25;
  • от -20°С до -24°С – 1,2;
  • от -15°С до -19°С – 1,1;
  • от -10°С до -14°С – 0,9;
  • не холоднее, чем -10°С – 0,7.

k5 – коэффициент, учитывающий высоту потолка:

  • до 2,7 м – 1,0;
  • 2,8 — 3,0 м – 1,02;
  • 3,1 — 3,9 м – 1,08;
  • 4 м и более – 1,15.

k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):

  • холодное, неотапливаемое помещение/чердак – 1,0;
  • утепленный чердак/мансарда – 0,9;
  • отапливаемое жилое помещение – 0,8.

k7 – учет теплопотерь окон (тип и к-во стеклопакетов):

  • обычные (в том числе и деревянные) двойные окна – 1,17;
  • окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
  • двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.

k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):

  • менее 0,1 – k8 = 0,8;
  • 0,11-0,2 – k8 = 0,9;
  • 0,21-0,3 – k8 = 1,0;
  • 0,31-0,4 – k8 = 1,05;
  • 0,41-0,5 – k8 = 1,15.

k9 – учет способа подключения радиаторов:

  • диагональный, где подача сверху, обратка снизу – 1,0;
  • односторонний, где подача сверху, обратка снизу – 1,03;
  • двухсторонний нижний, где и подача, и обратка снизу – 1,1;
  • диагональный, где подача снизу, обратка сверху – 1,2;
  • односторонний, где подача снизу, обратка сверху – 1,28;
  • односторонний нижний, где и подача, и обратка снизу – 1,28.

k10 – учет расположения батареи и наличия экрана:

  • практически не прикрыт подоконником, не прикрыт экраном – 0,9;
  • прикрыт подоконником или выступом стены – 1,0;
  • прикрыт декоративным кожухом только снаружи – 1,05;
  • полностью закрыт экраном – 1,15.

После определения значений всех коэффициентов и подстановки их в формулу, можно посчитать максимально надежный уровень мощности радиаторов. Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.

Калькулятор для быстрого и точного расчета

У каких радиаторов отопления самая высокая теплоотдача

Что касается характеристик металлов, то наименьшей теплоотдачей обладает сталь, а наибольшей – биметалл (сочетание алюминия и стали).

МатериалТеплоотдача (Вт/м*К)
Сталь47
Чугун52
Алюминий202-236
Биметалл380

Однако это лишь свойства металлов, представляющие общую картину. Теплоотдача, в меньшей степени, но зависит и от межосевого расстояния, площади секции, технологии изготовления. Поэтому мы рекомендуем рассмотреть эффективность каждого вида радиатора в целом, а затем сравнить конкретные наиболее удачные модели, выбрав самые эффективные из них.

Биметаллические

В среднем показатель теплоотдачи биметаллических радиаторов является самым высоким. В зависимости от модели – от 140 Вт до максимальной на рынке мощности в 280 Вт на 1 секцию (модель Sira RS 800). Представляют из себя сочетание стальных проводящих каналов и алюминиевого оребрения, быстро нагреваются и сразу же отдают тепло.

Приборы рассчитаны на рабочее давление системы до 35 атм. Даже самые простые модели имеют срок службы не менее 20 лет. Стоимость за секцию 395-2190 руб.

Алюминиевые

Близкими к биметаллическим являются показатели теплоотдачи алюминиевых радиаторов отопления, некоторые дорогостоящие модели могут иметь более высокую мощность и эффективность, чем простые биметаллические приборы.

В зависимости от модели тепловая мощность может быть в пределах от 130 Вт до 220,9 Вт на 1 секцию (модель Roca Dubal-80). При высокой эффективности, они, в сравнении с биметаллическими, имеют много эксплуатационных нюансов. При выборе необходимо обращать внимание на рабочее давление, иногда оно не превышает даже 10 атм.

Главным недостатком является необходимость поддержания определенной кислотности теплоносителя (воды), что сложно даже в частном доме, не говоря уже о квартире с центральным отоплением. В противном случае, уровень pH более 7,5 быстро разрушит приборы. Стоимость 1 элемента – от 350 до 1200 руб.

Стальные

Тепловая мощность стальных панельных батарей относительно небольшая, но оптимальная, особенно в соотношении цена-результат. Они быстро нагреваются, обладают лучшими конвекционными характеристиками (воздух прогревается заметно быстрее), но и быстро остывают. В зависимости от модели, теплоотдача равна 179-13 173 Вт (модель Kermi FTV 330930).

Показатель указывается для всего прибора (т.к. они не имеют секций), поэтому при выборе нужно обращать внимание на длину. Стоимость также имеет самый обширный диапазон – от 1300 до 60 000 руб за панель.

Как грамотно выбрать стальные радиаторы отопления
Виды, критерии выбора, лучшие модели и цены

Чугунные

Самую низкую теплоотдачу имеют чугунные радиаторы отопления – от 80 до 160 Вт на секцию (известные МС 140). Преимуществом и в то же время недостатком является низкая инерционность: прибор дольше других остывает, но это делает его неподходящим для точной регулировки климата автоматикой.

Чугунные батареи имеют большой объем теплоносителя и существенную массу. Однако чугун устойчив к любым перепадам давления в системе, загрязнениям теплоносителя, не поддается коррозии. Стоимость начинается от 500 рублей за секцию и может достигать 9 000 руб., если это декоративные иностранные высококачественные модели.

Сравнение теплоотдачи радиаторов отопления по совокупности характеристик: таблица

Материал изготовления Модель Номинальная тепловая мощность 1 секции (Вт) Стоимость секции (руб.) Итог: стоимость 1 кВт тепловой мощности (руб.)
БиметаллическиеRifar Base 500 x4 500/1002047003 431,4
Sira Ali Metal 500 x41875602 994,7
Royal Thermo Vittoria 500 x41675903 532,9
ROMMER Optima Bm 500 x4160395,252 470,3
АлюминиевыеRifar Alum 500 x41835503 005,5
Global ISEO 500 x41815503 038,7
Royal Thermo Revolution 500 x4171497,52 909,4
ROMMER Al Optima 500 x41553592 316,1
ЧугунныеМЗОО МС-140М-500 x41605083 175
МС-140 — 500 x41604803 000
СтальныеKermi FKO 11 500 400459 (панель)2 069 (панель)4 507,6
Buderus Logatrend K-Profil 22 500 400730 (панель)2 300 (панель)3 150,7

Известно, что самая высокая теплоотдача у биметаллических радиаторов отопления, они имеют все положительные свойства алюминиевых, но за счет стальных труб могут быть установлены в любую систему. Однако мы рекомендуем обращать внимание не только на показатели теплоотдачи, а на стоимость 1 кВт мощности. Чем больший показатель теплового потока, тем дороже отопительный прибор, но приборы с повышенной мощностью не всегда оправдывают себя.

Мы рекомендуем ориентироваться на низкотемпературный режим отопления, при котором используются радиаторы больших размеров, а температура теплоносителя в них не превышает 60-70 градусов. Такая система более надежна и долговечна, имеет огромный запас мощности, а низкотемпературный режим не разлагает органическую пыль, которая находится в любом жилом помещении.

Влияние размещения и способа подключения радиаторов на теплообмен

Лучшим местом размещения радиатора является место под световыми проемами, поскольку через окно, каким бы утепленным оно не было, происходят наибольшие потери тепла. Кроме того, горячий воздух от отопительного прибора создает тепловую завесу: холодный воздух от окна не распространяется по помещению, улучшается циркуляция.

Изменение тепловой мощности радиатора в зависимости от размещения и наличия экрана.

Если вы решили скрыть радиаторы под экраны или декоративные панели, это приведет к потере мощности. Иногда к таким мерам прибегают, чтобы целенаправленно снизить силу теплового потока на 10-15%.

Снижение тепловой мощности при различных способах подключения.

Существенное влияние оказывает и способ подключения радиаторов:

  1. Двустороннее или одностороннее. Подвод труб с разных сторон помогает увеличить теплоотдачу батареи, при таком подключении мощность прибора соответствует заявленной максимальной. Однако конструктивно к радиаторам с менее, чем 20 секциями лучше подводить трубы с одной стороны.
  2. Верхнее или нижнее. Подача теплоносителя в верхнюю часть батареи, при отводе через нижнюю, оказывает минимальное влияние на теплопередачу. Подача снизу вверх снижает показатель на 20-22%.

Как увеличить показатели уже установленных батарей

Незаменимым элементом отопительной системы является клапан Маевского.

Во многих современных радиаторах он поставляется в комплекте, в противном случае его можно докупить и легко установить своими руками.

Устройство монтируется в верхнюю пробку радиатора, противоположную подводу теплоносителя и позволяет легко устранить завоздушенность, следствием которой является существенное снижение теплоотдачи.

Некоторые прибегают к «народному способу», устанавливая между батареей и стеной сделанные собственноручно теплоотражающие экраны из фольги или металла с гофрированными ребрами.

Наиболее эффективный метод – установка дополнительных секций, однако это необходимо производить только при полном отключении системы отопления и учитывать дополнительную нагрузку от добавляемых секций.

Ссылка на основную публикацию