Снеговая нагрузка.Нагрузки, действующие на несущую конструкцию скатных крыш

Расчет снеговой нагрузки на кровлю

Снег выпадает зимой на всей территории России. С крыш его сдувается ветром, он испаряется под солнцем и снова выпадает. Изменение веса меняет изгиб несущих элементов крыши, крепления расшатываются, теряя прочность. Неожиданно большое количество выпавшего снега может стать причиной поломки крыши. Избежать этого можно, если при строительстве произвести расчет снеговой нагрузки.

Снеговая нагрузка на кровлю

Вес снежинок – сущая ерунда. Пока на улице будут отрицательные температуры, снег будет идти и накапливаться на крышах. Постепенно лежащий снег становится влажным от солнечного тепла, его плотность увеличивается до 300 кг на кубометр. Вес, которым накопившийся снег давит на поверхность, называется снеговой нагрузкой.

Рассмотрим процесс расчета давления снега на поверхности, чтобы учесть для проектирования достаточно прочных зданий и сооружений.

Нормативное значение

В России снег – регулярное погодное явление практически на всей территории. Разница в количестве выпадающего снега, продолжительности холодного периода, сезонных ветрах и количестве переходов температур через 0 0 С при окончании зимнего сезона.

Погодные условия отличаются не только в местностях с разными географическими координатами, но и в одном месте в разные годы. Однако многолетние измерения, проводимые метеорологами, позволяют узнать возможный максимум снежных осадков и рассчитать нормативную снеговую нагрузку для каждой местности.

Районное давление снега

Результаты расчетов группируются по категориям от I до VIII, соответствующим величинам статистического минимума и максимума веса снега в килограммах на квадратный метр горизонтальной поверхности:

  1. от 56 до 80;
  2. от 84 до 120;
  3. от 126 до 180;
  4. от 168 до 240;
  5. от 224 до 320;
  6. от 280 до 400;
  7. от 336 до 480;
  8. от 392 до 560.

Категории отображаются на карте, включенной в СНиП 2.01.07-85. Категории выделены цветом и пронумерованы.

При изменении статистики в границах категорий карта актуализируется. Нормативное значение для своего региона можно узнать, определив категорию места по карте.

Расчетная снеговая нагрузка

Нормативное значение только основа для расчета реально возможного веса снега. Просто использовать нормативное значение для расчета прочности нельзя, так как:

  • скаты крыши могут быть наклонными, снег будет разложен на большей площади;
  • ветра, сдувающие снег с кровли, в каждой местности свои;
  • окружающие строения изменяют влияние ветров;
  • теплопроводность крыши может привести к ускоренному таянию и снижению веса.

Для проектирования крыши с необходимой и достаточной надежной конструкцией следует учесть все факторы, влияющие на реальную ситуацию.

Формула расчета

Обязательная для применения проектировщиками формула вычисления снеговой нагрузки дана в СП 20.13330.2016 и выглядит следующим образом: S 0 = c b c t µ S g.

При расчете нормативная нагрузка S g умножается на три коэффициента:

  • µ – коэффициент, учитывающий угол наклона ската крыши по отношению к горизонтальной поверхности.
  • ct термический коэффициент. Зависит от интенсивности выделения тепла через кровлю.
  • cb ветровой коэффициент, учитывающий снос снега ветром.

Присутствие в формуле коэффициентов определяет зависимость результата от некоторых условий.

Определение коэффициентов

Рассмотрим значения коэффициентов применительно к зданиям с габаритными разменами менее 100 метров и без сложных кровельных форм. Для крупногабаритных зданий или при ломаных рельефах кровли применяются более сложные расчеты.

Зависимость величины снежного давления на квадратный метр от угла наклона ската крыши объясняется тем, что:

  1. На плоских или слабонаклоненных кровлях снег не сползает. Коэффициент µ равен 1,0 при наклоне ската до 25°.
  2. Расположение кровли под углом к горизонтальной поверхности приводит к увеличению площади кровли, на которую выпадает норма снега для горизонтального квадрата. Коэффициент µ равен 0,7 на углах 25° – 60°.
  3. На крутых поверхностях осадки не задерживаются. Коэффициент µ равен 0, если наклон более 60° (нагрузка отсутствует).

Введение в формулу термического коэффициента c t позволяет учесть интенсивность таяния снега от выделения тепла через кровлю. Как правило, кровельный пирог здания проектируют с минимальными потерями тепла в целях экономии, а коэффициент c t при расчетах принимают равным 1,0. Для применения пониженного значения коэффициента 0,8 необходимо, чтобы на здании было неутепленное покрытие с повышенным тепловыделением с наклоном кровли более чем 3° и наличием действенной системы отвода талых вод.

Ветер сносит снег с крыш, снижая давящий на конструкцию вес. Ветровой коэффициент c b можно понизить с 1,0 до 0,85, но только в том случае, если выполняются условия:

  1. Есть постоянные ветра со скоростью от 4 м/с и выше.
  2. Средняя зимняя температура воздуха ниже 5 0 С.
  3. Угол ската кровли от 12° до 20°.

Рассчитанное значение перед применением в проектных решениях умножают на коэффициент надежности γ f = 1,4, обеспечивая компенсацию теряющейся со временем прочности материалов конструкций.

Пример расчета нагрузки

Расчет снеговой нагрузки на кровлю проведем для здания, которое проектируется для строительства в Хабаровске. По карте определяем категорию района – II, по категории узнаем максимальное нормативное значение – до 120 кг/м 2 . Здание проектируется с двускатной крышей под углом 35 ° к поверхности. Значит, коэффициент µ равен 0,7.

Предполагается наличие в здании мансарды и применение эффективных теплоизолирующих материалов кровельного пирога. Коэффициент c t равен 1,0.

Здание будет построено в городе, этажность не превышает окружающие строения, расположенные на расстоянии двух высот здания. Коэффициент c b следует принять равным 1,0.

Таким образом, расчетное значение равно: S 0 = c b c t µ S g =1,0*1,0*0,7*120 =94 кг/м 2

Для расчета прочности, и не только конструкции крыши, но и фундамента, несущих элементов строения, применяем коэффициент надежности 1,4, получив для проектных вычислений значение 131,6 кг/м 2 .

К сведению домовладельцев

Рассчитав снеговую нагрузку, следует определить необходимость обустройства системы снегозадержания. Учитывать надо не только возможный сход снег, но и талую воду, образующую сосульки и замерзающую в трубах водостока. Для устранения этих явлений применяются системы обогрева карниза и водостока.

Снеговая нагрузка на кровлю: расчет и нормативное значение по СНиП

При строительстве крыши одним из важных технических решений является расчет максимальной снеговой нагрузки, определяющий конструкцию стропильной системы, толщину элементов несущей конструкции. Для России нормативное значение снеговой нагрузки находится по специальной формуле с учетом района местонахождения дома и норм СНиП. Для снижения вероятности последствий от чрезмерного веса снежной массы, при проектировании кровли обязательно выполняют расчет значения нагрузки. Особое внимание уделяется необходимости установки снегозадержателей, препятствующих схождению снега со свеса крыши.

Кроме оказания чрезмерной нагрузки на крышу, снежная масса, иногда, является причиной протечек в кровле. Так, при образовании полосы наледи, свободный сток воды становится невозможным и талый снег вероятней всего попадет в подкровельное пространство. Самые большие снегопады приходятся на долю горных районов, где снежный покров достигает нескольких метров в высоту. Но, наиболее негативные последствия от нагрузки происходят при периодическом оттаивании, наледи и промерзании. При этом возможны деформации кровельных материалов, неправильная работа водосточной системы и лавинообразный поток снега с крыши дома.

Факторы влияния снеговой нагрузки

При расчете нагрузки от снежных масс на скатную кровлю следует учитывать тот факт, что до 5% массы снега испаряется в течение суток. В это время он может сползать, сдуваться ветром, покрываться настом. Вследствие этих трансформаций возникают следующие негативные последствия:

  • нагрузка от слоя снега на несущую конструкцию кровли имеет свойство возрастать в несколько раз при резком потеплении с последующим морозом; это вызывает превышение нагрузки, расчет которой выполнялся некорректно; стропильная система, гидроизоляция и теплоизоляция при этом подвергаются деформациям;
  • кровля сложной формы с многочисленными примыканиями, переломами и другими архитектурными особенностями, имеет свойство собирать снег; это способствует неравномерной нагрузке, что не всегда учитывается при расчете;
  • снег, который сползает к карнизу, собирается возле краев и предоставляет опасность для человека; по этой причине в районах с большим количеством осадков рекомендуется заблаговременно устанавливать снегозадержатели;
  • сползание снега с карниза может повредить водосточную систему; во избежание этого нужно своевременно очищать крышу или применять снегозадержатели.

Способы очистки крыши от снега

Целесообразным выходом из ситуации является ручная очистка. Но, исходя из безопасности для человека, выполнять подобные работы крайне опасно. По этой причине расчет нагрузки оказывает значительное влияние на конструкцию кровли, стропильной системы и других элементов крыши. Давно известно, что чем круче скаты, тем меньше снега задержится на крыше. В регионах с большим количеством осадков в зимний период года угол наклона кровли составляет от 45° до 60°. При этом расчет показывает, что большое количество примыканий и сложных соединений обеспечивает неравномерную нагрузку.

Для предотвращения образования сосулек и наледи применяют системы кабельного обогрева. Нагревательный элемент устанавливают по периметру крыши прямо перед водосточным желобом. Для управления системой подогрева используют автоматическую систему управления или вручную контролируют весь процесс.

Расчет массы снега и нагрузки по СНиП

При снегопаде нагрузка может деформировать элементы несущей конструкции дома, стропильную систему, кровельные материалы. С целью предотвращения этого на стадии проектирования выполняют расчет конструкции в зависимости от воздействия нагрузки. В среднем снег весит порядка 100кг/м 3 , а в мокром состоянии его масса достигает 300 кг/м 3 . Зная эти величины, достаточно просто можно рассчитать нагрузку на всю площадь, руководствуясь всего лишь толщиной снегового слоя.

Толщина покрова должна измеряться на открытом участке, после чего это значение умножают на коэффициент запаса – 1,5. Для учета региональных особенностей местности в России используют специальную карту снеговой нагрузки. На её основе построены требования СНиП и других правил. Полная снеговая нагрузка на крышу рассчитывается при помощи формулы:

где S – полная снеговая нагрузка;

Sрасч. – расчетное значение веса снега на 1 м 2 горизонтальной поверхности земли;

μ – расчетный коэффициент, учитывающий наклон кровли.

На территории России расчетное значение веса снега на 1м 2 в соответствии со СНиП принимается по специальной карте, которая представлена ниже.

СНиП оговаривает следующие значения коэффициента μ:

  • при уклоне крыши менее, чем 25° его значение равняется единице;
  • при величине уклона от 25° до 60° он имеет значение 0,7;
  • если уклон составляет более 60° , расчетный коэффициент не учитывается при расчете нагрузки.

Друзья, У-ра, свершилось и мы рады представить вам онлайн калькулятор для расчета снеговой и ветровой нагрузки, теперь вам не нужно ничего прикидывать на листочке или в уме, все просто указал свои параметры и получил сразу нагрзку. Кроме этого калькулятор умеет считать глубину промерзания грунта, если вам известен его тип. Вот ссылка на калькулятор -> Онлайн Калькулятор снеговой и ветровой нагрузки. Кроме этого у нас появилось много других строительных калькуляторов посмотреть список всех вы можете на этой странице: Строительные калькуляторы

Наглядный пример расчета

Возьмем кровлю дома, который находится в Московской области и имеет уклон 30°. В этом случае СНиП оговаривает следующий порядок производства расчета нагрузки:

  1. По карте районов России определяем, что Московский регион находится в 3-м климатическом районе, где нормативное значение снеговой нагрузки составляет 180 кг/м 2 .
  2. По формуле из СНиП определяем полную нагрузку:180×0,7=126 кг/м 2 .
  3. Зная нагрузку от снежной массы, делаем расчет стропильной системы, которая подбирается исходя из максимальных нагрузок.

Установка снегозадержателей

Если расчет выполнен правильно, тогда снег с поверхности крыши можно не убирать. А для борьбы с его сползанием с карниза используют снегозадержатели. Они очень удобны в эксплуатации и освобождают от необходимости удаления снега с кровли дома. В стандартном варианте применяют трубчатые конструкции, которые способны работать, если нормативная снеговая нагрузка не превышает 180 кг/м 2 . При более плотном весе используют установку снегозадержателей в несколько рядов. СНиП оговаривает случаи использования снегозадержателей:

  • при уклоне 5% и более с наружным водостоком;
  • снегозадержатели устанавливают на расстоянии 0,6-1,0 метра от края кровли;
  • при эксплуатации трубчатых снегозадержателей под ними должна предусматриваться сплошная обрешетка крыши.
Читайте также:  Виды натяжного потолка

Также СНиП описывает основные конструкции и геометрические размеры снегозадержателей, места их установки и принцип действия.

Плоские кровли

На плоской горизонтальной поверхности скапливается максимально возможное количество снега. Расчет нагрузок в этом случае должен обеспечивать необходимый запас прочности несущей конструкции. Плоские горизонтальные крыши практически не строят в районах России с большим количеством атмосферных осадков. Снег может скапливаться на их поверхности и создавать чрезмерно большую нагрузку, которая не учитывалась при расчете. При организации водосточной системы с горизонтальной поверхности прибегают к установке подогрева, который обеспечивает стекание воды с крыши.

Уклон в сторону водосточной воронки должен быть не менее 2°, что даст возможность собирать воду со всей кровли.

При строительстве навеса для беседки, стоянки автомобиля, дачного домика особое внимание уделяют расчету нагрузки. Навес в большинстве случаев имеет бюджетную конструкцию, которая не предусматривает влияния больших нагрузок. С целью увеличения надежности эксплуатации навеса используют сплошную обрешетку, усиленные стропила и другие конструктивные элементы. Используя результаты расчета можно получить заведомо известное значение нагрузки и использовать для строительства навеса материалы необходимой жесткости.

Расчет основных нагрузок дает возможность оптимально подойти к вопросу выбора конструкции стропильной системы. Это обеспечит длительную службу кровельного покрытия, повысит его надежность и безопасность эксплуатации. Установка возле карниза снегозадержателей позволяет обезопасить людей от сползания опасных для человека снежных масс. В дополнение к этому отпадает необходимость ручной очистки. Комплексный подход в проектировании кровли также включает вариант монтажа системы кабельного обогрева, которая будет обеспечивать стабильную работу водосточной системы при любой погоде.

Сбор нагрузок на кровлю и стропила

Вы сами собираетесь проектировать и строить дом? Тогда Вам без процедуры сбора нагрузок на кровлю (или другими словами, на несущие конструкции крыши) не обойтись. Ведь только зная нагрузки, которые будут действовать на кровлю, можно определить минимальную толщину железобетонной плиты покрытия, рассчитать шаг и сечение деревянных или металлических стропил, а также обрешетки.

Данное мероприятие регламентируется СНиПом 2.01.07-85* (СП 20.13330.2011) “Актуализированная редакция” [1].

Сбор нагрузок на кровлю производится в следующем порядке:

1. Определение собственного веса конструкций крыши.

Сюда, например, для деревянной крыши входят вес покрытия (металлочерепица, профнастил, ондулин и т.д.), вес обрешетки и стропил, а также масса теплоизоляционного материала, если предусматривается теплый чердак или мансарда.

Для того, чтобы определить вес материалов нужно знать их плотность, которую можно найти здесь.

2. Определение снеговой (временной) нагрузки.

Россия находится в таких широтах, где зимой неизбежно выпадает снег. И этот снег необходимо учитывать при конструировании крыши, если, конечно, Вы не хотите лепить снеговиков у себя в гостиной и спать на свежем воздухе.

Нормативное значение снеговой нагрузки можно определить по формуле 10.1 [1]:

где: св – понижающий коэффициент, который учитывает снос снега с крыши под действием ветра или других факторов; принимается он в соответствии с пунктами 10.5-10.9. В частном строительстве он обычно равен 1, так как уклон крыши дома там чаще всего составляет более 20%. (Например, если проекция крыши составляет 5м, а ее высота – 3м, уклон будет равен 3/5*100=60%. В том случае, если у вас, например, над гаражом или крыльцом предусматривается односкатная крыша с уклоном от 12 до 20%, то св=0,85.

сt – термический коэффициент, учитывающий возможность таяния снега от избыточного тепла, которое выделяется через не утепленную кровлю. Принимается он в соответствии с пунктом 10.10 [1]. В частном строительстве он равен 1, так как практически не найдется человека, который на не утепленном чердаке поставит батареи.

μ – коэффициент, принимаемый в соответствии с пунктом 10.4 и приложением Г [1] в зависимости от вида и угла наклона кровли. Он позволяет перейти от веса снегового покрова земли к снеговой нагрузке на покрытие. Например, для следующих углов наклона односкатной и двускатной кровли коэффициент μ имеет значения:

Остальные значения определяются по методу интерполяции.

Примечание: коэффициент μ может иметь значение меньше 1 только в том случае, если на крыше нет конструкций, задерживающих снег.

Sg – вес снега на 1 м2 горизонтальной поверхности; принимается в зависимости от снегового района РФ (приложение Ж и данным таблицы 10.1 [1]). Например, город Нижний Новгород находится в IV снеговом районе, а, следовательно, Sg = 240 кг/м2.

3. Определение ветровой нагрузки.

Расчет нормативного значения ветровой нагрузки производится в соответствии с разделом 11.1 [1]. Теорию здесь расписывать не буду, так как весь процесс описан в СНиПе.

Примечание: Ниже Вы найдете 2 примера, где подробно расписана данная процедура.

4. Определение эксплуатационной (временной) нагрузки.

В том случае, если Вы захотите использовать крышу как место для отдыха, то Вам необходимо будет учесть нагрузку равную 150 кг/м2 (в соответствии с таблицей 8.3 и строкой 9 [1]).

Данная нагрузка учитывается без снеговой, т.е. в расчете считается либо та, либо другая. Поэтому с точки зрения экономии времени в расчете целесообразно использовать большую (чаще всего это снеговая).

5. Переход от нормативной к расчетной нагрузке.

Этот переход осуществляется с помощь коэффициентов надежности. Для снеговой и ветровой нагрузок он равен 1,4. Поэтому для того, чтобы перейти, например, от нормативной снеговой нагрузки к расчетной необходимо S умножить на 1,4.

Что касается нагрузок от собственного веса конструкций крыши и ее покрытия, то здесь коэффициент надежности принимается по таблице 7.1 и пункту 8.2.2 [1].

Так, в соответствии с данным пунктом коэффициент надежности для временно распределенных нагрузок принимается:

1,3 – при нормативной нагрузке менее 200 кг/м2;

1,2 – при нормативной нагрузке 200 кг/м2 и более.

6. Суммирование.

Последним этапом производится складывание всех нормативных и расчетных значений по всем нагрузкам с целью получения общих, которые будут использоваться в расчетах.

Примечание: если Вы предполагаете, что по заснеженной кровле будет кто-то лазить, то к перечисленным нагрузкам для надежности Вы можете добавить временную нагрузку от человека. Например, она может равняться 70 кг/м2.

Для того, чтобы узнать нагрузку на стропила или необходимо преобразовать кг/м2 в кг/м. Это производится путем умножения расчетного значения нормативной или расчетной нагрузки на полупролет с каждой стороны. Аналогично собирается нагрузка на доски обрешетки.

Например, стропила лежат с шагом 500 мм, а обрешетины – с шагом 300 мм. Общая расчетная нагрузка на кровлю составляет 200 кг/м2. Тогда нагрузка на стропила будет равна 200*(0,25+0,25) = 100 кг/м, а на доски обрешетки – 200*(0,15+0,15) = 60 кг/м (см. рисунок).

Теперь для наглядности рассмотрим два примера сбора нагрузок на кровлю.

Пример 1. Сбор нагрузок на односкатную монолитную железобетонную кровлю.

Исходные данные.

Район строительства – г. Нижний Новгород.

Конструкция крыши – односкатная.

Угол наклона кровли – 3,43° или 6% (0,3 м – высота крыши; 5 м – длина ската).

Размеры дома – 10х9 м.

Высота дома – 8 м.

Тип местности – коттеджный поселок.

Конструкций, задерживающих снег на крыше, не предусмотрено.

1. Монолитная железобетонная плита – 100 мм.

2. Цементно-песчаная стяжка – 30 мм.

4. Утеплитель – 100 мм.

5. Нижний слой гидроизоляционного ковра.

6. Верхний слой наплавляемого гидроизоляционного ковра.

Сбор нагрузок.

Определим нагрузки, действующие на 1 м2 грузовой площади (кг/м2) кровли.

– монолитная ж/б плита (ρ=2500 кг/м3) толщиной 100 мм

– цементно-песчаная стяжка (ρ=1800 кг/м3) толщиной 30 мм

– пенополистирол (ρ=35 кг/м3) толщиной 100 мм

Примечание: вес паро- и гидроизоляции не учитывается в связи с их малым весом.

Расчет снеговой нагрузки на кровлю: как не наделать ошибок при проектировании и эксплуатации крыши

Если вы когда-нибудь разгребали снег, то хорошо знаете, каким тяжелым он может быть. И что говорить о крыше, на которой за первый месяц зимы собирается такая шапка, которая способна проломить даже довольно прочную конструкцию! И особенно актуальна тема грамотного обустройства крыши для жителей северных регионов России, где сугробы есть уже в сентябре. Вот почему при строительстве дома все задаются вопросом: выдержит ли кровля всю массу снега, сбрасывать его каждые 2 недели, или нет.

Вот для этой цели и было разработано такое понятие, как нормативная снеговая нагрузка и совокупность ее с ветровой. Здесь действительно немало тонкостей и нюансов, и, если вы хотите разобраться – мы будем рады помочь!

Содержание

Принцип работы крыши: предельные состояния

Итак, расчет снеговой нагрузки на кровлю делают с учетом двух предельных состояний крыши – на разрушению и прогиб. Говоря простым языком, это именно та способность всей конструкции сопротивляться внешним воздействиям – до того момента, пока она не получит местное повреждение или недопустимую деформацию. Т.е. пока крыша не продавится или не повредится настолько, что ей понадобится ремонт.

Предел несущих способностей крыши

Как мы уже сказали, предельных состояний всего различают два. В первом случае речь идет о том моменте, когда стропильная конструкция исчерпала свои несущие способности, включая ее прочность, устойчивость и выносливость. Когда этот предел преодален, крыша начинает разрушаться.

Этот предел обозначают так: σ ≤ r или τ ≤ r. Благодаря этой формуле профессиональные кровельщики рассчитывают, какая нагрузка для конструкции будет еще предельно допустимой, и какая станет ее превышать. Другими словами, это – расчетная нагрузка.

Для такого вычисление вам нужны такие данные, как вес снега, угол наклона ската, ветровая нагрузка и собственный вес крыши. Также имеет значение, какая была использована стропильная система, обрешетка и даже теплоизоляция.

А вот нормативная нагрузка высчитывается исходя из таких данных, как высота здания и угол наклона скатов. И ваша задача вычислить и расчетную нагрузку, и нормативную, и перевести их в линейную. Для существует специальный документ – СП 20. 13330. 2011 в пунктах 4.2.10.12; 11.1.12.

Предел крыши на прогиб стропильной конструкции

Второе предельное состояние говорит о чрезмерном деформациях, статических или динамических нагрузках на крышу. В этот момент в конструкции происходят недопустимые прогибы, да так, что раскрываются сочинения. В итоге получается, что стропильная система как бы цела, не разрушена, но все-таки ей нужен ремонт, без которого она не сможет функционировать дальше.

Такой предел нагрузки вычисляют при помощи формулы f ≤ f. Она означает, что погиб стропил при нагрузке не должен превышать определенного предельного состояния. А для балки перекрытия есть своя формула – 1/200, что означает, что прогиб не должен быть больше, чем 1 на 200 от измеряемой длины балки.

И правильно вести расчет снеговой нагрузки сразу по обеим предельным состояниям. Т.е. ваша задача при расчете количества снега и его влияния на крышу не допустить прогиба больше, чем это возможно.

Вот ценный видео-урок для “терпеливых” на эту тему:

Нормативная снеговая нагрузка в вашей местности

Когда говорят о расчете снеговой нагрузки на крышу, то говорят о том, сколько килограмм снега может приходиться на каждый квадратный метр крыши, пока она реально может держать такой вес до начала деформации конструкции. Говоря простым языком, какой шапке снега можно позволить лежать на крыше каждую зиму без опасения того, что она проломит кровлю или расшатает всю стропильную систему.

Такой расчет делают еще на стадии проектирования дома. Для этого первым делом вам нужно изучить все данные по специальным таблицам и картам СП 20.3330.2011 «Нагрузки и воздействия». Исходя из этого узнайте, будет ли запланированная ваши конструкция надежной.

Например, если согласно расчетам она должна спокойно выдерживать слой снега в 200 килограмм на каждый квадратный метр, тогда нужно будет внимательно следить за тем, чтобы снежная шапка на крыше не была выше одного высоту. Но, если если снег на крыше уже превышает 20-30 см и вы знаете, что скоро пойдет дождь, то его лучше убрать.

Итак, чтобы узнать нормативную снеговую нагрузку в той местности, где вы строите дом, обратитесь к такой карте:

Кроме того, такой же коэффициент не используется для зданий, которые хорошо защищены от ветра другими зданиями или высоким лесом. Уравнение расчета у вас будет выглядеть вот так:

  • для первого предельного состояния, где рассчитывается прочность, примените формулу qр. Сн = q×µ,
  • для второго предельного состояния, где рассчитывается возможный прогиб крыши, применяйте такую формулу qн. Сн = 0,7q×µ.

При этом, как вы уже заметили, для второй группы предельных состояний вес снега следует учитывать с коэффициентом 0,7, т.е. сама формула будет выглядеть вот так: 0,7q.

Удельный вес: такой легкий и тяжелый снег

А теперь перейдем к практике. Если вы живете в России, а не на южном континенте без зимы, то знаете, каким на самом деле бывает снег: невероятно легким и неимоверно тяжелым. Например, тот же пушистый снежок в морозную и сухую погоду при температуре -10°С будет иметь плотность около 10 кг на кубический метр. А вот снег под конец осени и в начале зимы, который долго лежал на горизонтальных и наклонных поверхностях и «слежался», уже имеет массу куда больше – от 60 килограмм на кубический метр. К слову, узнать плотность снега не сложно – достаточно зимой вырезать большой лопатой образец снега в один кубический метр и взвесить его.

Если мы говорим о рыхлом снеге, который, по идее, легок и не доставляет проблем, то знайте, что здесь таится некая опасность. Рыхлый снег как ни какой другой быстро вбирает в себя все осадки в виде дождя и становится уже мокрым снегом. А его нахождение на крыше, где нет грамотно организованного стока, чревато большими проблемами.

Далее, весной в процессе длительной оттепели удельный вес снега также значительно растет. У сухого уплотненного снега среднестатистическая плотность находится в пределах от 200 до 400 кг на кубический метр. Не упускайте также такой важный момент, когда снег долго оставался лежать на крыше и не было нового снегопада, а вы его не убирали. Тогда независимо от его плотности, он будет иметь всю ту же массу, хотя визуально сама «шапка» стала меньше в два раза. В особо влажном климате весной удельный вес снега достигает 700 кг на кубический метр!

Снеговой мешок и температура воздуха

«Cнеговым мешком» называет тот снег на крыше, который превышают средние нормативы на толщину, характерные для конкретной местности. Или более просто: если выше 50 см на глаз.

Обычно снеговые мешки скапливается на не ветреной стороне крыши и в местах, где расположены слуховые окна и другие элементы крыши. Как раз в таких местах и ставят сдвоенные и усиленные стропильные ноги, либо вообще делают сплошную обрешетку. Кроме того, здесь по всем правилам должна быть специальная подкровельная подложка, чтобы избежать протечек.

Поэтому в более теплых регионах России плотность снега получается всегда больше, чем в холодных. Ведь в таких местностях зимой снег уплотняется под действием солнца, верхние слои сугроба давят на нижние. Учитывайте также, что снег, который перебрасывает с места на место увеличивает свой удельный вес минимум в два раза. Благодаря всему этому средний удельный вес обычно равен посреди зимы 280 + – 70 кг на кубический метр.

А весной в период обильного таяния мокрый снег способен весить почти тонну! Можете ли вы себе представить, что на вашей крыше находится одновременно сразу несколько тонн снега? Вот почему тот факт, что в процессе строительства крыши на стропильной системе висят сразу несколько рабочих и это якобы говорит о ее прочности, во внимание брать не стоит. Ведь пару человек точно не весят сразу несколько тонн.

Учитывайте, что в расчете нормативной нагрузки также принимается во внимание средняя температура воздуха в январе. Какая именно у вас, смотрите уже по карте СП 20.13330.2011:

Если окажется, что у вас средняя температура в январе меньше, чем 5 градусов по Цельсию, то коэффициент снижения снеговой нагрузки 0,85 тогда не применяется. Ведь из-за такой температуры снег зимой постоянно будет подтаивать снизу, образовывая наледь и задерживаясь на крыше.

И, наконец, чем больше угол ската, тем меньше на нем всегда остается снега, ведь тот постепенно сползает под собственным весом. А на тех крышах, у которых угол наклона больше или равен 60 градусов, снега не остается вообще. Поэтому в таком случае коэффициент µ должен быть равен нулю. В это же время для ската с углом 40° µ равен 0,66, 15° – 0,33 и для 45° градусов – 0,5.

Ветер и распределение снега на двух скатах

В тех регионах, где средняя скорость ветра все три зимних месяца превышает 4 м/сек, на пологих крышах и с уклоном от 7 до 12 градусов снег частично сносится и здесь его нормативное количество следует слегка уменьшить, умножив на 0,85. В остальных случаях он должен быть равен единице, либо его можно не использовать, что вполне логично.

В таком случае ваша формулу теперь будет иметь такой вид:

  • расчет на прочность Qр.cн = q×µ×c;
  • расчет на прогиб Qн.cн = 0,7q×µ×c.

Накопление снега на крыше также напрямую зависит от ветра. Значение имеет форма крыши, как она расположена относительно преобладающих ветров и какой угол наклона ее скатов (не в плане того, как легко съезжает снег, а в плане того, легко ли ветру его сносит).

Из-за всего этого снега на крыше может быть как меньше, чем на плоской поверхности земли, так и больше. Плюс на обоих скатах одной крыши может быть абсолютно разная высота снежной шапки.

Поясним подробнее последнее утверждение. Например такое нередкое явление, как метель, постоянно переносит снежинки на подветренных сторону. И этому препятствует конек крыши, который, задерживая ветер, уменьшает скорость движения снежных потоков и снежинки оседают больше на одном скате, чем на другом.

Получается, что с одной стороны крыши снега может лежать меньше, чем в норме, а с другой – намного больше. И это тоже нужно учитывать, ведь получается, что в таком случае на одном из скатов собирается почти вдвое больше снега, чем на земле!

Для расчета такой снеговой нагрузки применяется такая формула: для двускатных крыш с углом наклона 20 градусов, но меньше 30, процент накопления снега будет равен 75% с наветренной стороны и 125% – с подветренной. Этот процент высчитывается от количества снежного покрова, который лежит на плоской земле. Значение всех этих коэффициентов указано в нормативном документе СНиР 2.01.07-85.

И, если вы определили, что ветер в вашем регионе будет создавать ощутимую разницу снежного покроя на разных скатах, то с подветренной стороны нужно будет устроить спаренные стропил:

Если же у вас вообще нет данных по розе ветров местности, или они не точны, тогда отдайте предпочтение максимальной нагрузке, чтобы подстраховаться – так, как-будто оба ската вашей крыши находятся с подветренной стороны и на них всегда будет больше снега, чем на земле.

Так что происходит потом со снеговым мешком с подветренной стороны? Он постепенно сползает и давит уже на свес кровли, пытаясь его сломать. Вот почему по правилам свес кровли должен быть равен укреплен, в зависимости от кровельного его покрытия.

К слову, если ваша крыша еще и имеет перепад высот, вам будет полезно посмотреть этот видео-урок:

Формула фактической снеговой нагрузки на кровлю

Следующий важный момент. Часто снеговая нагрузка рассчитывается с таким простым и понятным конечным результатом, как n-е количества килограмм на квадратный метр кровли. Но стропильная система сама по себе намного сложнее, и оценивать давление только на ее сплошное покрытие не совсем верно.

Дело в том, что каждый элемент стропильной системы крыши берет на себя определенную нагрузку, которая была изначально рассчитана только на него одного, а не на всю крышу сразу. А поэтому необходимо перевести единицы измерения кг/м 2 в единицу измерения кг/м, т.е. килограммы на метры.

Это значит измерить линейное давление на стропила, или обрешетку, свесы и прогоны. А все это – линейные конструкции, нагрузки действуют вдоль продольной оси каждого:

Если мы возьмем отдельное стропило, на нее действует та нагрузка, которая будет расположена прямо над ним. И чтобы изменить площадь общей нагрузки на крышу, нужно изменить ширину шага установки стропил.

Итог: учет совокупности всех нагрузок

И, наконец, подведем итог и отметим самую распространенную ошибку при расчете снеговых нагрузок на крышу. Это – опущение того момента, что все нагрузки действуют в совокупности. Сама крыша имеет вес, стоящий на ней человек, утеплители и много чего другого!

Поэтому все нагрузки, которые воздействуют на крышу, нужно суммировать и множить на коэффициент 1,1. Вот тогда вы получите уже какое-то реальное значение. Почему на 1,1? Чтобы учесть дополнительные неожиданные факторы, вы ведь не хотите, чтобы стропильная система работала на пределе? Ремонт обычно бывает сложным и дорогостоящим.

В зависимости от полученного значения, вам теперь нужно рассчитать шаг установки стропил. Во внимание также нужно будет взять длину стены здания и удобство размещения на ней целого числа стабильных ног при одинаковом расстоянии: например, 90 см, 1,5 метра, 1,2 метра.

Довольно часто решающий критерий выбора шага стропил – экономический, хотя свои условия также диктует выбранное кровельное покрытие. Но помните о том, что при обустройстве крыши все просчитывают так, чтобы стропила легко могли выдерживать возлагаемые на них давление. А для этого прикиньте несколько вариантов установки стропил и определите для каждого этого варианта сечение досок и расход материала.

Правильно выбранным шагом считается такой, где материалоемкость самая меньшая при том, что итоговые свойства остаются такими же. И учитывайте при этом, что, кроме стропил, обрешетки и прогонов еще в конструкции крыши всегда есть такие дополнительные несущие элементы, как стойки.

Как произвести расчет ветровой и снеговой нагрузки на кровлю в зависимости от региона проживания

Кровля осуществляет постоянную защиту здания от всех погодных и климатических проявлений, исключая контакт всех материалов с атмосферной или дождевой водой и являясь граничным слоем, отсекающим воздействие морозного воздуха на чердачное помещение.

Таковы основные и наиболее важные функции кровли в представлении неподготовленного человека, они вполне верны, но не отражают полный список функциональных нагрузок и испытываемых напряжений.

При этом, реальность гораздо суровее, чем это выглядит на первый взгляд, и воздействие на кровлю не ограничивается определенным износом материала.

Оно передается практически всем несущим элементам постройки — в первую очередь, стенам здания, на которые непосредственно опирается вся крыша, а в конечном счете — фундаменту.

Пренебрегать всеми создающимися нагрузками нельзя, это приведет к скорому (иногда — внезапному) разрушению постройки.

Типы нагрузок на кровлю

Основными и наиболее опасными воздействиями на кровлю и на всю конструкцию в целом являются:

  • Снеговые нагрузки.
  • Ветровые нагрузки.

При этом, снеговые действуют в течение определенных зимних месяцев, отсутствуя в теплое время, тогда как ветер создает воздействие круглый год. Ветровые нагрузки, имея сезонные колебания силы и направления, в той или иной степени присутствуют постоянно и опасны периодически случающимися шквальными усилениями.

Кроме того, интенсивность этих нагрузок имеет разный характер:

  • Снег создает постоянное статическое давление, которое можно регулировать путем очистки крыши и удаления скоплений. Направление действующих усилий постоянно и никогда не меняется.
  • Ветер действует непостоянно, рывками, внезапно усиливаясь или утихая. Направление может изменяться, что заставляет все конструкции крыши иметь солидный запас прочности.

Внезапный сход с крыши больших масс снега может причинить ущерб имуществу или людям, оказавшимся в местах падения. Кроме того, периодически случаются кратковременные, но чрезвычайно разрушительные атмосферные явления — ураганные ветра, сильные снегопады, особенно опасные при наличии мокрого снега, который на порядок тяжелее обычного. Предсказать дату таких событий практически невозможно и в качестве защитных мер можно лишь увеличивать прочность и надежность кровли и стропильной системы.

Сбор нагрузок на кровлю

Зависимость нагрузок от угла наклона крыши

Угол наклона крыши определяет площадь и мощность контакта кровли с ветром и снегом. При этом, снеговая масса имеет вертикально направленный вектор силы, а ветровое давление, вне зависимости от направления — горизонтальный.

Поэтому, принимая угол наклона более крутым, можно снизить давление снежных масс, а иногда и полностью исключить возникновение скоплений снега, но, при этом, увеличивается «парусность» крыши, ветровые напряжения возрастают.

Очевидно, что для снижения ветровых нагрузок идеальной была бы плоская кровля, тогда как именно она не позволит скатываться массам снега и поспособствует образованию больших сугробов, при таянии способных промочить всю постройку. Выходом из ситуации является выбор такого угла наклона, при котором максимально удовлетворяются требования как по снеговой, так и по ветровой нагрузкам, а они в разных регионах имеют индивидуальные значения.

Зависимость нагрузки от угла крыши

Вес снега на квадратный метр крыши в зависимости от региона

Количество осадков — показатель, напрямую зависящий от географии региона. Более южные районы снега почти не видят, более северные имеют постоянное сезонное количество снеговых масс.

При этом, высокогорные районы, вне зависимости от географической широты, имеют высокие показатели по количеству выпадающего снега, что, в сочетании с частыми и сильными ветрами, создает массу проблем.

Строительные Нормы и Правила (СНиП), соблюдение положений которых является обязательным к выполнению, содержат специальные таблицы, отображающие нормативные показатели количества снега на единицу поверхности в разных регионах.

Эти данные являются основой расчетов снеговых нагрузок, поскольку они вполне достоверны, а также приводятся не в средних, а в предельных значениях, обеспечивающих должный запас прочности при строительстве крыши.

Тем не менее, следует учитывать устройство кровли, ее материал, а также — наличие дополнительных элементов, вызывающих скопления снега, поскольку они могут существенно превышать нормативные показатели.

Вес снега на квадратный метр крыши в зависимости от региона на схеме ниже.

Регион снеговой нагрузки

Расчет снеговой нагрузки на плоскую крышу

Расчет несущих конструкций выполняется по методу предельных состояний, то есть таких, когда испытываемые усилия вызывают необратимые деформации или разрушения. Поэтому прочность плоской кровли должна превышать величину снеговой нагрузки для данного региона.

Для элементов крыши существует два типа предельных состояний:

  • Конструкция разрушается.
  • Конструкция деформируется, выходит из строя без полного разрушения.

Расчеты ведутся по обоим состояниям, имея целью получить надежную конструкцию, гарантированно выдерживающую нагрузку без последствий, но и без излишних затрат строительных материалов и труда. Для плоских крыш значения снеговых нагрузок будут максимальными, т.е. поправочный коэффициент уклона равен 1.

Таким образом, согласно таблицам СНиП, общий вес снега на плоской кровле составит величину норматива, умноженную на площадь кровли. Значения могут достигать десятки тонн, поэтому зданий с плоскими крышами в нашей стране практически не строят, особенно в регионах с высокими нормами осадков в зимнее время.

Нагрузка на плоскую крышу

Расчет снеговой нагрузки на кровлю онлайн

Пример расчета снеговой нагрузки поможет наглядно продемонстрировать порядок действий, а также покажет возможную величину давления снега на конструкции дома.

Снеговая нагрузка на кровлю рассчитывается с помощью следующей формулы:

где S — давление снега на квадратный метр кровли.

Sg — нормативная величина снеговой нагрузки для данного региона.

µ — поправочный коэффициент, учитывающий изменение нагрузки на разных углах наклона кровли. От 0° до 25° значение µ принимается равным 1, от 25° до 60° — 0,7. При углах наклона кровли свыше 60° снеговая нагрузка не учитывается, хотя в реальности бывают скопления мокрого снега и на более крутых поверхностях.

Произведем подсчет нагрузки на кровлю площадью 50 кв.м, угол наклона — 28° (µ=0,7), регион — Московская область.

Тогда нормативная нагрузка составляет (по данным СНиП) 180 кг/кв.м.

Умножаем 180 на 0,7 — получаем реальную нагрузку 126 кг/кв.м.

Полное давление снега на кровлю составит: 126 умножаем на площадь кровли — 50 кв.м. Результат — 6300 кг. Таков расчетный вес снега на крыше.

Снеговое воздействие на кровлю

Ветровая нагрузка на кровлю

Расчет ветровой нагрузки производится подобным образом. За основу берется нормативное значение ветровой нагрузки, действующее в данном регионе, которое умножается на поправочный коэффициент высоты здания:

W — ветровая нагрузка на квадратный метр площади.

Wo — нормативная величина по региону.

k — поправочный коэффициент, учитывающий высоту над поверхностью земли.

Имеются три группы значений :

  • Для открытых участков земной поверхности.
  • Для лесных массивов или городской застройки с высотой препятствий от 10 м.
  • Для городских поселений или местностей со сложным рельефом с высотой препятствий от 25 м.

Все нормативные значения, как и поправочные коэффициенты содержатся в таблицах СНиП и должны учитываться при расчетах нагрузок.

В заключение необходимо подчеркнуть большую величину и неравномерность нагрузок, создаваемых снегом и ветрами. Значения, сопоставимые с собственным весом крыши, нельзя игнорировать, такие величины слишком серьезны. Невозможность регулировать или исключать их присутствие заставляет реагировать путем увеличения прочности и правильного выбора угла наклона.

Все расчеты должны опираться на СНиП, для уточнения или проверки результатов рекомендуется использовать онлайн-калькуляторы, которых много в сети. Лучшим способом станет применение нескольких калькуляторов с последующим сравнением полученных величин. Правильный расчет — основа долговременной и надежной службы кровли и всей постройки.

Полезное видео

Более подробно о кровельных нагрузках вы можете узнать из этого видео:

Строительные калькуляторы – ProstoBuild.ru

Расчет стропильной системы крыши

Стропильная нога (стропила) – основной элемент стропильной системы. Изготавливают чаще всего из бруса шириной 50-100 мм, высотой 100-200 мм.
Мауэрлат – элемент стропильной системы, который укладывается на несущие стены и равномерно передает нагрузку от стропильных ног на стены. Сечение мауэрлата чаще всего 100х100, 100х150 либо 150х150 мм.
Прогон – элемент стропильной системы. Передает нагрузку стропильных ног на стойки, а также обеспечивает дополнительную жесткость стропильной системы. Сечение 100х100, 100х150 либо 100х200 мм.
Лежень – элемент стропильной системы. Функции лежня схожи с мауэрлатом (это перераспределение точечной нагрузки от стоек/стропильных ног в распределенную нагрузку на несущие стены). Разница в том, что на мауэрлат опираются стропильные ноги, а на лежень – стойки. Сечение 100х100, 100х150 либо 150х150 мм.
Стойка – вертикальный элемент стропильной системы, служащий для передачи нагрузки от стропильной ноги на лежень. Сечение 100х100, 100х150 мм.
Подкос – элемент стропильной системы, который служит для подпорки стропильной ноги и снятия с нее части нагрузки. Сечение 100х100, 100х150 мм.
Затяжка – горизонтальный элемент стропильной системы, служащий для восприятия распорной нагрузки от стропильных ног на несущие стены. Сечение 50х150 мм.
Обрешетка – элемент стропильной системы, предназначенный для передачи нагрузки кровли на стропильные ноги.
Кобылка – элемент стропильной системы, который используется как продолжение стропильной ноги и служит главным образом для экономии материала, либо просто при недостаточной длине стропильной ноги. Сечение 50х150 мм.

Расчет размеров, определение угла наклона

1. Когда у Вас есть пролет и угол наклона
2. Когда у Вас есть пролет и высота конька

Расчет по пролету и углу наклона:

Длина стропильной ноги будет состоять из суммы двух длин:

где L1 = C / cos a
L2 = B / cos a
C – выступ стропильной ноги (см. рисунок)
B – ширина пролета (см. рисунок)
а – угол наклона в градусах (если у вас угол дан в промилях или процентах – можете перевести у нас на калькуляторе)

Расчет по пролету и высоте конька:

Длина стропильной ноги L в обоих случаях будет максимально приближена в реальному размеру.

Сбор нагрузок на стропильную систему

1. Снеговая нагрузка
2. Ветровая нагрузка
3. Постоянная нагрузка от:
– Вес кровельного материала
– Вес обрешетки
– Вес утеплителя
– Собственный вес стропильной системы

Для начала давайте узнаем грузовую площадь на стропильную ногу. Грузовая площадь – это площадь, с которой нагрузка действует на расчетную конструкцию (стропильную ногу).

На рисунке показаны две грузовые площади (заштрихованы): на стропильную ногу №1 (F=L·D) и на стропильную ногу №2 (F=0,5·D·L). Логично, что площадь №2 в два раза меньше, чем площадь №1, а следовательно и стропильная нога №2 несет нагрузку в 2 раза меньше и сечение ее должно быть меньше, но с целью унифицирования конструкций стропильных ног, мы будем рассчитывать наиболее нагруженную и полученное сечение принимать для всех.

Например: длина стропильной ноги (возьмем с предыдущего примера) L=6410 мм, а расстояние между ними 900 мм. Следовательно, грузовая площадь на наиболее нагруженную стропильную ногу будет равна:

Перевести мм2 в м2 можно здесь.

Снеговая нагрузка – это основная нагрузка, которая действует на стропильную систему.

Искомая величина снеговой нагрузки равна

– если угол а ≤ 30 градусов, то μ=1
– если угол 30 Расчет стропильной системы

Расчет на прочность стропильной ноги будет основываться на следующей формуле:

Где M – максимальный изгибающий момент
W – момент сопротивления поперечного сечения изгибу
Rизг – расчетное сопротивление изгибу (1-ый сорт древесины – 14 Мпа, 2-ой сорт– 13Мпа, 3-ий сорт – 8,5Мпа)

Момент сопротивления прямоугольного сечения:

Где b – ширина сечения стропильной ноги
h – высота сечения стропильной ноги

Если задаться, что высота h в 1,5 раза больше чем ширина b, то в итоге мы будем иметь следующую формулу.

Если задаться, что высота h в 2 раза больше чем ширина b, то в итоге мы будем иметь следующую формулу.

Исходные данные – сосна 1 сорт, а геометрия и нагрузки такие же как в примерах выше.

Максимальный изгибающий момент рассчитаем у нас на калькуляторе путем ввода значений, посчитанных выше либо по формуле M=q·L1·L1/8 (менее точная):

L1 = 5189 мм – основной пролет
L2 = 1221 мм – правая консоль
q = 335,88 кг/м – нагрузка q

Результатом будем иметь максимальный изгибающий момент M=1008,7 кг·м

Переведем наш момент из кг*м в Н*мм.

Зададимся отношением h/b=1,5, следовательно, формула прочности будет иметь следующий вид:

Принимаем b = 125 мм, а высота h тогда будет 1,5·125=187,5 мм. Принимаем h =200 мм.

Полученное сечение стропильной ноги – 125х200 мм

Если задались бы отношением h/b=2, то получили бы следующее:

Принимаем b = 125 мм, а высота h тогда будет 2·125=250 мм. Принимаем h =250 мм.

Полученное сечение стропильной ноги – 125х250 мм

Итак, в г. Томск для крыши под углом 35 градусов с шагом стропил 900 мм из сосны I сорта, высотой до конька 7м с профнастилом в качестве кровельного материала подойдут стропила сечением 125х200 мм.

Подводя итог, можно сказать, что рассчитать стропила отнюдь не сложно, главное – внимательно собрать и рассчитать все данные.

Ссылка на основную публикацию
Вид нагрузкиНорм.
Коэф.Расч.