Магнето.Бесконтактные системы зажигания

Магнето – устройство и принцип действия

В 1887 году немецкий инженер и изобретатель Роберт Бош, владелец одноименной компании, разработал и запатентовал первую систему зажигания на основе магнето. Все началось с того, что один из клиентов компании заказал разработку системы зажигания для своего газового двигателя, и вскоре заказ был выполнен. Позже выявились некоторые недостатки, и устройство было доработано. В результате к 1890 году компания Robert Bosch GmbH уже выполняла крупные заказы на системы зажигания на принципе магнето, которые стали поступать отовсюду в огромном количестве.

Спустя семь лет, в 1897 году, устройство было в конце концов адаптировано и для транспортного средства, поскольку компании «Daimler» потребовалось разработать зажигание для трицикла De Dion Bouton. Так проблема зажигания для автомобильных двигателей внутреннего сгорания, работавших на высоких оборотах, была наконец решена. Еще через пять лет, в 1902 году, ученик Роберта Боша, Готтлоб Хонольд, усовершенствовал зажигание на магнето, добавив свечу зажигания, и таким образом сделал устройство универсальным.

Так что же такое магнето? Как оно устроено и работает? Все очень просто, как и все гениальное. Магнето представляет собой генератор переменного тока, в котором роль индуктора выполняет постоянный магнит, приводимый во вращение внешней силой. Магнитный ротор создает вращаясь переменный магнитный поток, который и наводит ЭДС в катушке статора.

Типичное магнето автомобильной системы зажигания содержит обмотки низкого и высокого напряжения. Обмотка низкого напряжения имеет в своей цепи прерыватель и конденсатор, а обмотка высокого напряжения соединена одним своим выводом с массой, и со свечей зажигания — другим своим выводом.

Общее П-образное ярмо, на которое намотаны катушки, представляет собой магнитопровод, в котором и возбуждается переменное магнитное поле посредством вращения постоянного магнита. Часто в качестве обмотки низкого напряжения используется часть витков обмотки высокого напряжения, подобно тому, как выполнены обмотки автотрансформаторов.

Когда магнит вращается, в обмотке низкого напряжения наводится ЭДС, но при этом обмотка накоротко замкнута механическим прерывателем, поэтому в ней возникает индукционный ток, вызванный изменяющимся магнитным потоком, пронизывающим сердечник, поскольку магнит пересекает его своими силовыми линиями. Изменение магнитного потока длится несколько миллисекунд, и в результате имеется замкнутая сама на себя катушка с током в несколько ампер.

В какой-то момент контакты прерывателя размыкаются, ток устремляется из обмотки в конденсатор, и начинаются гармонические колебания в образовавшемся колебательном контуре низкого напряжения, их частота составляет около 1 кГц. Поскольку контакты размыкаются быстро, менее чем за четверть периода колебаний контура первичной цепи, пробоя между контактами прерывателя не происходит, и только после размыкания контактов прерывателя, ЭДС в контуре низкого напряжения достигает амплитуды.

В этот момент на свече, подключенной к обмотке высокого напряжения, происходит искровой пробой, энергия конденсатора низковольтной цепи преобразуется в энергию переменного тока высоковольтной цепи, поскольку колебания в низковольтной цепи продолжаются, и горючая смесь в цилиндре успевает воспламениться.

Колебания длятся не более 1 миллисекунды, в силу значений индуктивности и емкости конструкции магнето, затем контакты прерывателя замыкаются вновь, и начинается очередной цикл нарастания тока в низковольтной цепи, шунтированной самой собой.

Таким образом мы видим, что магнето представляет собой магнитоэлектрическую машину, функция которой заключается в преобразовании механической энергии вращения магнитного ротора в электрическую энергию, в частности — в энергию высоковольтного разряда на свече зажигания. Сегодня еще можно встретить системы зажигания двигателей внутреннего сгорания на базе магнето.

Очевидно не каждый генератор можно отнести к магнето, поскольку к магнето относятся лишь те генераторы, которые возбуждаются от постоянных магнитов, и как правило соединенные с высоковольтным трансформатором системы зажигания двигателей внутреннего сгорания.

Бывает, что магнето обеспечивает не только зажигание, но и электроснабжение бортовой сети транспортного средства, однако чаще всего магнето питает только систему зажигания. Между тем, сегодня можно встретить на рынке генераторы на постоянных магнитах с несколькими генераторными катушками на статоре, такие генераторы подходят для мотоциклов, но в принципе они универсальны.

В некоторых случаях дополнительная обмотка, расположенная на сердечнике магнето, все же служит для генерации электричества для бортовой сети. Иногда магниты располагаются на маховике, который выполняет двойную функцию — возбуждение магнето и возбуждение генератора переменного тока. Такое гибридное устройство называется вообще-то «магдино» от сочетания слов «магнето» и «динамо».

На легких мотоциклах, гидроциклах, снегоходах, на лодочных подвесных моторах можно встретить именно магдино, работающие совместно с выпрямителями и регуляторами напряжения. Мощность магдино не велика, в пределах 100 ватт, но для бортового освещения и даже для зарядки аккумулятора этого вполне достаточно. Преимущество магдино — малые габариты и небольшой вес.

В бензиновых двигателях внутреннего сгорания магнето традиционно применялись с давних времен, обеспечивая импульс тока для свечи зажигания, когда еще батареи не были внедрены массово для этой цели. Даже сегодня такие решения можно встретить. Двухтактные или четырехтактные двигатели мопедов, газонокосилок, бензопил. Во Второй мировой войне карбюраторные двигатели немецких танков имели систему зажигания на магнето.

Поршневые авиационные двигатели имеют на каждом цилиндре пару свечей, и каждая группа свечей подключена к своему магнето — левая и правая группа свечей зажигания питаются раздельно. Такое решение позволяет более эффективно сжигать топливную смесь, а в случае отказа одного из пары магнето, второе остается в работе, это добавляет системе надежности.

Зажигание от магнето. Устройство и принцип работы

Видео: Что такое Магнето? Принцип работы системы зажигания? Как работает система зажигания?

Магнето — это магнитоэлектрическая машина, преобразующая механическую энергию в электрическую. В настоящее время иногда применяется в системах зажигания двигателей внутреннего сгорания.

Магнето объединяет в себе магнитоэлектрический генератор, прерыватель и катушку зажигания. Оно вырабатывает ток низкого напряжения и преобразует его в ток высокого напряжения. На тракторах применяют одноискровые и двухискровые магнето левого и правого вращения. У магнето правого вращения ротор, если смотреть со стороны привода, вращается по часовой стрелке.

Магнитная система магнето состоит из двухполюс­ного или четырех полюсного магнита 9, двух стоек 2 и сердечника 3 индукционной катушки. Стойки и сердечник изготовлены из пластин электротехнической стали.

Электрическую цепь составляют первичная 4 и вторичная 5 обмотки трансформатора, подвижной и неподвижный контакты прерывателя, закрепленные соответственно на изолированном рычажке 11 и стойке 10, соединенной с «массой». Параллельно контактам прерывателя подключен конденсатор 18.

Одноискровое магнето М-124Б:
а — схема; 1 — жесткая полумуфта; 2 — стойка; 3— сердечник; 4— первичная обмотка; 5 — вторичная обмотка; 6 — свеча зажигания; 7 — провод высокого напряжения; 8 — вывод высокого напряжения; 9 — магнит; 10 — стойка непо­движного контакта; 11 — рычажок подвижного контакта; 12 — кулачок; 13 — эксцентрик; 14 — провода; 15 — кнопка выключателя; 16 — вал; 17 — клемма дистанционного выключателя зажигания; 18 — конденсатор; 19 — выключатель;
б — наконечник свечи; 20 — наконечник; 21 — резистор подавления радиопомех;
в — зависимость результирующего магнитного потока Фрез (Фрез-суммарный магнитный поток постоянного магнита и тока первичной обмотки) ЭДС Е1 н тока в первичной обмотке от угла поворота магнита при замкнутой первичной цепи

Контакты прерывателя размыкаются кулачком 12, установленным на конце вала магнита. На втором конце вала закреплена жесткая приводная полумуфта 1 (или центробежный автомат опережения зажигания). Один конец первичной обмотки соединен с сердечником («массой»), второй с рычажком подвижного контакта прерывателя. Концы вторичной обмотки подключены: один — к концу первичной обмотки, второй — к выводу 8 высокого напряжения. Далее ток высокого напряжения подводится по высоковольтному проводу 7 к свече непосредственно или через распределитель.

При вращении магнита его полюсные наконечники поочередно проходят мимо стоек, при этом магнитный поток замыкается через сердечник трансформатора. Когда магнит устанавливается парал­лельно стойкам (в нейтральном положении), магнитный поток замыкается через башмаки стоек. Таким образом, за один оборот двух­полюсного магнита в сердечнике трансформатора магнитный поток меняется дважды. Изменяющийся как по величине, так и по направ­лению магнитный поток пересекает витки первичной и вторичной обмоток. В первичной обмотке наводится переменный ток низкого напряжения (12…20 В), который течет по цепи: первичная обмотка — замкнутые контакты прерывателя — «масса» магнето — первичная обмотка. Во вторичной обмотке создается ЭДС порядка 1,0…1,5 кВ, которая не пробивает искровой промежуток свечи. При отклонении магнита от нейтрального положения в сторону вращения на 8…10° в первичной обмотке течет наибольший по величине ток, создающий максимальный магнитный поток вокруг катушки. В этот момент кулачок прерывателя должен размыкать контакты. Ток и магнитный поток первичной обмотки ис­чезают. Исчезающий магнитный поток пересекает вторичную обмотку и индуктирует в ней ток высокого напряжения (11…24 кВ), кото­рый подводится по проводу высокого напряжения 7 к свече 6, где пробивает искровой промежуток, воспламеняет смесь, а затем по «массе» и первичной обмотке возвращается во вторичную.

Одновременно со вторичной обмоткой исчезающий магнитный поток пересекает первичную обмотку, в которой наводит ЭДС само­индукции, достигающую 300 В. ЭДС самоиндукции, стремясь поддержать прежнее направление тока, заряжает конденсатор, который сразу разряжается через первичную обмотку в обратном направле­нии, создавая магнитный поток противоположного направления, что способствует более резкому пересечению вторичной обмотки магнит­ными силовыми линиями и повышению вторичного напряжения. При отсутствии или пробое конденсатора резкого пересечения витков вторичной обмотки не происходит, так как ЭДС самоиндукции под­держивает прежнее направление тока через конденсатор или зазор 0,25…0,35 мм между контактами прерывателя. Вторичное напряже­ние не достигает требуемого значения и искра в зазоре свечи 0,6… 0,7 мм исчезает или очень слабая (имеет недостаточную энергию).

Читайте также:  Водяной уровень

Магнето:
а — М-48Б1:1 — крышка; 2 — бегунок; 3 — электрод вывода; 4 — электрод бе­гунка; 5 — контакт; 6 — проводник; 7 — винт; 8 — электрод; 9 — вывод катуш­ки; 10 — электрод дополнительного разрядника; 11—корпус муфты опереже­ния зажигания; 12 — грузики; 13 — пружины; 14 — штифты; 15 — пластины; 16, 19 — ведущий_и ведомый фланцы; 17 — гайка; 18 — втулка; б — прерыватель магнето М-124Б1: 1 — винт; 2 — контакт неподвижный; 3 — рычажок подвижного контакта; 4 — стойка; 5 — пружина подвижного контак­та; 6 — эксцентрик; 7 — конденсатор; 8 — фильц для смазки; 9 — кулачок пре­рывателя; 10 — кнопка ручного выключателя зажигания

Магнето двух- и четырехцилиндровых двигателей имеет распре­делитель тока .высокого напряжения. Распределитель магнето М-48Б1 двухцилиндрового двигателя П-23 состоит из пласт­массового бегунка 2, закрепленного на роторе винтом 7, и крышки 1. Ток высокого напряжения снимается электродом 8 с вывода 9 ин­дукционной катушки и подводится соединительным стальным про­водником 6 через латунный подпружинный контакт 5 к электроду бегунка. С бегунка ток поочередно подается через зазор 0,5…0,8 мм к боковым клеммовым электродам 3, а от них по проводам высоко­го напряжения к электродам свеч.

Магнето М-48Б1, М-24Б и некоторые другие снабжены муфтой опережения зажигания, служащей для автоматического изменения угла опережения зажигания в зависимости от частоты вращения коленчатого вала.

Зажигание мотоблоков

Зажигание – это механизм, отвечающий за образование электрического импульса, требуемого мотоблоку для воспламенения заправляемого горючего. От исправности системы зажигания зависит первый запуск и последующая работа двигателя сельхозагрегата. Как и остальные, этот механизм нуждается в регулярном обслуживании и своевременном ремонте – это станет залогом стабильной работы ДВС при любых погодных и эксплуатационных условиях.

Устройство зажигания мотоблока

Система зажигания относится к перечню самых важных узлов как фирменного, так и самодельного мотоблока. Основная ее функция заключается в генерировании искры, которая нужна для воспламенения и постепенного сгорания топлива в хромированном цилиндре ДВС.

Простота заводского устройства узла позволяет выполнить собственноручный ремонт зажигания мотоблока , который, чаще всего, заключается в выставлении зазора между его элементами. Однако, чтобы сделать это правильно, нужно изучить конструкцию узла.

Устройство зажигания любого хозяйственного сельхозагрегата включает катушку, которая изначально подключена к электрическому питанию системы, а также магнето и свечи. Во время запуска силового агрегата мотоблока происходит подача напряжения, в результате чего между магнитным «башмаком» и штатной свечой образуется ярко выраженная искра. Она необходима для мгновенного воспламенения горючего, которое в этот момент находится в камере сгорания мотора. Более детально о строении системы зажигания используемого мотоблока расскажет фото .

Электронная система зажигания мотоблока также часто комплектуется прерывателями, срабатывающими в автоматическом режиме при появлении любой из неисправностей узла. Это приводит к аварийному отключению электрического питания в сети.

Как выставить зажигание на мотоблоке?

О необходимости срочной регулировки зазора в системе зажигания подскажут следующие признаки:

  • необходимость частых безрезультатных вытягиваний шнура стартера;
  • запоздалая реакция двигателя мотоблока на манипуляции со стартером;
  • полное отсутствие запуска ДВС сельхозагрегата.

Каждая из этих неисправностей говорит о том, что оператором должна быть проведена установка зажигания используемого в хозяйстве мотоблока. Правильный порядок действий для этого можно найти в инструкции по эксплуатации имеющейся техники. Однако руководство далеко не всегда есть под рукой у оператора. В таком случае зазор между встроенными модулем зажигания и маховиком можно выставить в такой последовательности:

  1. Сначала оператор должен закрыть свечу специальным угольником;
  2. Затем ее корпус потребуется прижать к головке штатного цилиндра ДВС;
  3. Далее свечу нужно провернуть в сторону, противоположную от отверстия, предусмотренного в торце хромированного цилиндра;
  4. После этого необходимо аккуратно повернуть коленчатый вал ДВС мотоблока – для этого достаточно потянуть шнур пускового механизма;
  5. В результате выполненных действий между встроенными электродами должна проскочить искра ярко-синего цвета. Если этого не произошло, значит необходимо проверить дистанцию между магнето и стартером мотоблока – она должна составлять от 0,1 до 0,15 мм. В случае несоответствия этим требованиям зазор между элементами потребуется настроить.

Регулировка зажигания хозяйственного мотоблока многими опытными пользователями производится на слух. Для этого подходит как контактное, так и бесконтактное магнето. Чтобы самостоятельно настроить систему, необходимо:

  1. Завести двигатель и немного ослабить штатный трамблер;
  2. Медленно повернуть прерыватель в каждую из возможных сторон;
  3. Добиться максимальных оборотов заводского двигателя и быстро закрепить конструкцию;
  4. Прислушаться и найти момент, при котором мгновенно появляется искра;
  5. Поворачивая прерыватель, дождаться четкого щелкающего звука;
  6. Зафиксировать штатный крепеж трамблера.

В некоторых случаях правильно отрегулировать имеющийся зазор поможет стробоскоп.

Для настройки нужно:

  1. Разогреть силовой агрегат мотоблока;
  2. Подключить прибор к сети электрического питания сельхозагрегата;
  3. Установить датчик звука на высоковольтном проводе, подсоединенном к одному из цилиндров штатного ДВС;
  4. Аккуратно снять вакуумную трубку и заглушить ее любым подручным средством;
  5. Посмотреть, куда будет направлен свет от стробоскопа – он должен «смотреть» в сторону штатного шкива;
  6. Запустить двигатель и оставить его работать на холостом ходу;
  7. Прокрутить трамблер;
  8. Как только метки на встроенном шкиве совпадут с меткой, расположенной на крышке используемого устройства, повернуть гайку заводского прерывателя до конца.

Каждый из этих способов подходит для регулировки как на бензиновом, так и на дизельном мотоблоке . Главное в процессе самостоятельной настройки – не снимать катушку и другие элементы системы зажигания – это может привести к нарушению работы всего узла.

Как проверить катушку зажигания на мотоблоке?

Чаще всего проверка этого важного элемента зажигания мотоблока производится с использованием заведомо рабочего тестового образца. Если в процессе тестирования оказалось, что с установкой образца все начало работать так, как должно, значит штатная катушка зажигания мотоблока неисправна.

Однако, тестовый образец бывает под рукой далеко не у всех. Если его нет, значит необходимо попытаться проверить встроенную катушку другими способами. Перед этим нужно исключить любые поломки, которые могут появиться в кнопке запуска и высоковольтной проводке. Кроме того, пользователь должен внимательно изучить электрические схемы , в которых указано расположение элементов системы зажигания.

Дальнейшие способы проверки включают:

  • измерение сопротивления встроенной катушки зажигания. Стоит отметить, что он не всегда используется пользователями сельхозтехники. Во-первых, оператор должен знать точные параметры сопротивления, создаваемого штатной катушкой. Во-вторых, кроме катушки индуктивности в конструкции системы зажигания предусмотрены полупроводниковые комплектующие, требуемые для генерирования нужного электрического импульса. Проблемы со всеми этими элементами можно выявить только при их нагреве. Чтобы правильно проверить катушку зажигания, потребуется отключить от нее колпачок и штатный бронепровод. Зная о точных параметрах сопротивления встроенного элемента, оператор сможет понять, какая именно деталь системы неисправна;
  • проверку создаваемой искры при помощи специального прибора – он должен быть подключен к месту разрыва электрической цепи между высоковольтными проводами штатной катушки и свечи;
  • тестирование катушки при помощи встроенной в конструкцию свечи – для этого нужно вывернуть встроенную свечу и аккуратно приложить ее корпусом к цилиндру. Затем необходимо потянуть за ручку стартера и обратить внимание на искру, которая образуется между заводскими контактами свечи. Нужно отметить, что этот способ проверки имеющейся катушки приблизительный – свеча в этом случае находится не под нагрузкой, из-за чего в цилиндре ДВС отсутствует компрессия. В результате штатный маховик мотора будет вращаться быстрее.

Каждый из этих способов дает приблизительную информацию о состоянии катушки зажигания. Нужно помнить, что найти точную причину неисправности детали можно с использованием специализированных тестеров, которые есть только в специализированных мастерских.

Магнето для мотоблока – тестирование в домашних условиях

Магнето на мотоблок представляет собой конструктивно сложный элемент, который находится в постоянном контакте с высоковольтной проводкой и взаимодействует с электричеством. Из-за эксплуатации мотоблока в сырую погоду, случайных ударов и сбоев в подаче электрического питания эта деталь постепенно выходит из строя. Проверить ее на предмет исправности достаточно просто, однако действовать оператору придется на свой страх и риск, так как единственный способ испытания детали в полевых условиях будет весьма опасным для всей системы зажигания.

Чтобы проверить магнето мотоблока, потребуется:

  1. На вкрученной в штатное месте свече аккуратно демонтировать колпачок и вставить вместо него небольшой гвоздь. Последний должен быть чистым, без признаков коррозии;
  2. Гвоздь должен быть установлен на расстоянии в 7 мм от стенки цилиндра штатного цилиндра силового агрегата мотоблока;
  3. Запустить двигатель сельхозагрегата;
  4. Проверить, появилась ли искра во время запуска мотора. Она должна быть окрашена в ярко-синий цвет и хорошо различима. Если это не так, значит магнето вышло из строя.

В случае поломки магнето его потребуется заменить. Сделать это можно своими руками , сняв неисправную и установив новую деталь.

Что делать, если нет искры на мотоблоке?

Если после проведенных тестов выяснилось, что пропала искра , то причину этой поломки нужно искать в главных элементах системы зажигания сельхозагрегата.

Читайте также:  Производство генераторов

Для этого потребуется:

  • осмотреть свечу – ее нужно вывернуть, используя для этого специальный ключ;
  • свеча зажигания может быть полностью сухой – это свидетельствует о непопадании горючего в цилиндр двигателя, то есть о засорении топливных трубок или неисправности карбюратора;
  • в некоторых случаях деталь оказывается мокрой от бензина и моторного масла. Причины этому заключаются в переизбытке смазки, которая содержится в топливе, или о ее просачивании с масляного картера двигателя непосредственно в цилиндр. В этом случае оператор должен снять свечу и тщательно просушить ее. После этого нужно просушить цилиндр, несколько раз интенсивно потянуть на себя трос стартера на двигателе с вывернутой свечой;
  • реже всего из-за отсутствия правильного и своевременного обслуживания сельхозтехники на свече мотоблока образуется толстый сплошной слой нагара и высохших смолистых отложений. Чтобы восстановить свечу, нужно осторожно нагреть ее зажигалкой и смыть остатки смолы чистым бензином. После этого деталь потребуется просушить и вкрутить на место. Если это не помогло, значит свечу необходимо заменить.

Во время снятия, очистки и повторной установки свечи важно действовать предельно аккуратно. Любое неосторожное движение может повредить электроды детали, из-за чего она больше не сможет генерировать искру.

Полезные видеоматериалы

Разные фирменные мотоблоки производства известных брендов отличаются друг от друга конструкцией встроенной системы зажигания. Чтобы знать, как правильно отрегулировать этот важный элемент, предлагаем видео , в которых содержится правильный порядок действий при настройке системы зажигания на самых распространенных моделях мотоблоков.

Для мотоблоков марки Нева:

Для моделей марки Агро:

Для сельхозагрегатов производства бренда Урал;

Для мотоблоков Крот:

Для моделей Зубр:

Для мотоблоков бренда Салют:

Для сельхозагрегатов Хонда:

Для модельного ряда производства компании Каскад:

Для мотоблоков бренда МТЗ:

Магнето. Устройство и работа. Виды и применение

Еще в 19 веке немецкий изобретатель Бош, который владел своей компанией, разработал на основе магнето первую схему системы зажигания. Со временем в конструкции выявлялись недостатки и производились доработки устройства. В итоге компания Бош в 1890 году уже выполняла большие заказы по изготовлению систем зажигания, основанных на этом принципе. Заказы поступали в большом количестве. В 1902 году ученик Боша – Хоннольд модернизировал эту конструкцию и сделал ее универсальной.

Магнето является устройством, служащим для преобразования вращательной энергии ротора в электрический ток, а именно, в разряд высокого напряжения на свечах зажигания в бензиновом моторе внутреннего сгорания. В настоящее время это устройство практически не используется, однако его еще можно увидеть на старых конструкциях автомобильных двигателей, или на пусковых двигателях тракторов.

Если сравнивать это устройство с генератором, то отличие состоит в том, что возбуждение происходит от постоянных магнитов. В зависимости от устройства, магнето может обеспечивать электричеством бортовую сеть транспортного средства, а не только запуск двигателя. Но обычно устройства такого вида используются только для воспламенения топливной смеси, так как их энергии недостаточно для других нужд.

Устройство и работа

Такая конструкция является генератором переменного тока. В нем в качестве индуктора выступает постоянный магнит, который приводится во вращение двигателем. Этот магнитный ротор при вращательном движении образует изменяемый магнитный поток, наводящий электродвижущую силу в катушке статора.

На автомобиле это устройство имеет две обмотки: высокого и низкого напряжения. Низковольтная обмотка соединена с конденсатором и контактным прерывателем, а высоковольтная обмотка соединяется одним концом на массу, а другим со свечей зажигания.

Катушки расположены на общем магнитопроводе П-образной формы, в котором происходит возбуждение переменного магнитного поля путем вращательного движения постоянного магнита. Обычно низковольтная обмотка является частью высоковольтной обмотки, по аналогии устройства автотрансформатора.

Работа магнето происходит следующим образом. При вращении постоянного магнита, в низковольтной обмотке образуется электродвижущая сила. Эта обмотка замкнута контактами прерывателя, вследствие чего в ней появляется индукционный ток, образованный переменным магнитным потоком в магнитопроводе, так как постоянный магнит пересекает его силовыми линиями. Магнитный поток изменяется в течение нескольких долей секунды, в результате в замкнутой катушке протекает большой ток.

В определенный момент прерыватель размыкает свои контакты, и ток обмотки устремляется в конденсатор, в результате чего образуются гармонические колебания низкого напряжения. Так как контакты размыкаются с большой скоростью, то между ними не происходит пробоя. Только после их размыкания электродвижущая сила в контуре достигает своей амплитуды.

В это мгновение на свече зажигания, которая подключена к высоковольтной обмотке, возникает пробой искры, энергия конденсатора переходит в переменный ток высокого напряжения, потому что в низковольтной цепи колебания продолжаются, и топливная смесь в двигателе успевает воспламениться.

Длительность колебаний составляет не больше одной миллисекунды, что обуславливается величиной емкости и индуктивности устройства. Далее прерыватель вновь замыкает свои контакты, и весь цикл повторяется.

В результате можно сказать, что магнето является магнитоэлектрической машиной, которая преобразует вращательное движение постоянного магнита в электрический ток. Некоторые исполнения этого устройства оснащены дополнительной обмоткой, находящейся на магнитопроводе. Эта обмотка служит для выработки электрического тока для бортовой сети мотоцикла или другого средства передвижения. Постоянные магниты, расположенные на маховике, могут исполнять две задачи – возбуждение высокого напряжения для искры на свече зажигания, и возбуждение генератора. Это комбинированное устройство называют «магдино».

Разновидности

Устройства делятся по нескольким факторам.

По направлению вращения:
  • Левого.
  • Правого.
По количеству искр за оборот ротора:
  • 1-искровые.
  • 2-искровые.
По габаритным размерам:
  • Малогабаритные. Применяются в мототехнике, мопедах, лодочных моторах, гидроциклах.
  • Нормальные. Используются в тракторных четырехцилиндровых моторах.
Где используется магнето

Чаще всего на лодочных моторах, мотоциклах, мопедах встречаются магдино, функционирующие вместе с регуляторами напряжения и выпрямительными мостами. Их мощность небольшая и может достигать всего 100 Вт, однако для работы габаритных фонарей или зарядки аккумуляторной батареи этого хватает. Достоинством магдино являются малый вес и небольшие габаритные размеры.

В бензиновых моторах магнето обычно использовались с давних времен, создавая искру в свече зажигания, в то время, когда аккумуляторы еще не были так распространены. В настоящее время такие конструкции до сих пор встречаются. Во время войны в немецких танках были установлены карбюраторные моторы, в которых использовали такую систему зажигания.

Самолетные поршневые моторы имеют две свечи на каждом цилиндре. Отдельная группа свечей работает от отдельного магнето – правая и левая группа подсоединены отдельно. Это дает возможность наиболее эффективно работать двигателю, а также повышает надежность работы системы зажигания.

Магнето.Бесконтактные системы зажигания

Электрооборудование двигателей внутреннего сгорания

Схемы и конструкция электрооборудования бензиновых и дизельных двигателей


Наши дополнительные сервисы и сайты:


e-mail:
office@matrixplus.ru
tender@matrixplus.ru

icq:
613603564

skype:
matrixplus2012

телефон
+79173107414
+79173107418

г. С аратов

Статистика

Принцип работы магнето

Магнето представляет собой аппарат переменного тока (с возбуждением от постоянных магнитов), в котором объединены источник тока, трансформатор, прерыватель и распределитель.

По устройству магнето разделяются на следующие основные типы:

1) с неподвижным магнитом и вращающейся обмоткой;

2) с вращающимся постоянным магнитом и неподвижной обмоткой;

3) с вращающимся магнитным коммутатором, в котором магнит и обмотки неподвижны.

Магнето с вращающимся магнитом (рис. 45) применяется чаще, чем другие типы, так как они имеют более простое устройство из-за отсутствия скользящих контактов.

Магнитный поток магнето замыкается через железный сердечник 5, на котором размещены первичная 3 и вторичная 4 обмотки. При вращении ротора 6 магнитный поток, создаваемый током первичной обмотки, будет изменяться как по величине, так и по направлению.

Изменяющийся магнитный поток индуктирует э. д. с. в обеих обмотках сердечника (э. д. с. вращения). Э. д. с. вращения будет достигать максимума в моменты наибольшей скорости изменения магнитного потока (2 раза за один оборот двухполюсного магнита). Э. д. с. вращения в первичной обмотке сердечника при высоких числах оборотов достигает 50-100 в, а во вторичной 2000-3000 в. Однако такая э. д. с. явно недостаточна для образования искры в свече зажигания; кроме того, создаваемая ею искра не всегда проскакивала бы точно в один и тот же заданный момент.

Рис. 45. Принципиальная схема зажигания от магнето: 1 – конденсатор; 2 – прерыватель; 3 – первичная обмотка; 4-вторичная обмотка; 5 – сердечник; 6 – ротор; 7 – свеча зажигания

Для увеличения вторичного напряжения и для возможности точного обеспечения момента получения искры в первичную цепь включен прерыватель 2 тока, контакты которого замыкают первичную цепь тогда, когда э. д. с. в первичной обмотке близка к нулю.

После замыкания контактов э. д. с. в первичной обмотке начинает возрастать, это ведет к возрастанию в ней тока на период поворота якоря на 90°. Ток в первичной обмотке достигает своего наибольшего значения тогда, когда ротор повернется на угол, несколько превышающий 90°, т. е. с некоторым запаздыванием от максимального значения э. д. с. холостого хода. При размыкании контактов прерывателя ток в первичной цепи быстро падает до нуля, а энергия магнитного поля первичной обмотки при этом переходит в электрическую энергию искры на свече 7 зажигания. Таким образом, рабочий процесс магнето разбивается на следующие этапы: возбуждение переменного тока низкого напряжения в первичной обмотке, разрыв первичной цепи, прекращение поступления тока в первичную цепь и возбуждение тока во вторичной цепи, искровой пробой в свече зажигания через распределитель тока высокого напряжения.

Для получения от магнето максимального вторичного напряжения нужно, чтобы прерыватель разомкнул первичную цепь в тот момент, когда индуктированный в ней ток достигает наибольшего значения. Это происходит при определенном положении ротора относительно сердечника. Угол, определяющий положение ротора магнето в момент размыкания контактов прерывателя, называют абрисом магнето. Абрис устанавливается в зависимости от назначения магнето в пределах 7-14°.

Ток первичной цепи системы зажигания от магнето и интенсивность искры возрастают с увеличением числа оборотов ротора. Однако при больших числах оборотов ротора этот ток не будет возрастать, что объясняется значительным повышением индуктивного сопротивления обмотки при увеличении частоты тока.

Средства для мойки


форсунок в ультразвуковых ваннах и на стендах

Дезинфицирующие средства

широкого применения

для дезинфекции на объектах железнодорожного транспорта, пищевой промышленности, ЛПУ, ветеринарного надзора

Моющие средства

для железнодорожного транспорта, сертифицированные ВНИИЖТ- “Фаворит К” и “Фаворит Щ”, внутренняя и наружная замывка вагонов.

МОЙ МОТОЦИКЛ

Большое количество двигателей, отличающихся по рабочему объему, числу цилиндров, тактности, частоте вращения, конструкции и целевому назначению, привело к созданию разнообразных систем зажигания.

Системы зажигания ражигания разделяются на: Контактные и Бесконтактные.

Контактные: Батарейные: Классические, Контактнотранзис-торные. Автономные: Магнето агрегатное; Магнето
(магдино) встраиваемые: Магнето(магдино)маховичное; Магнето (магдино) роторное.

Бесконтактные: Батарейные: С накоплением энергии в ин-дуктивности; С накоплением энергии в емкости
Автономные:
С накоплением энергии в индуктивности; С накоплением энергии в емкости: Системы зажигания с питанием от многополюсного генератора; Магнето бесконтактное.

Контактные, или классические, системы применяются чуть ли не с самого рождения двигателя внутреннего сгорания. Огромное число двигателей эксплуатируется с ними и поныне.
Итак, что же представляет собой «классика»?
Разберем ее на примере наиболее простой, батарейной системы. Она состоит из следующих элементов и узлов: катушки зажигания, контактов прерывателя, кулачка, конденсатора, искровых свечей (рис. 2а).

ко всей теме один общий рисунок

При замкнутых контактах прерывателя SA1 от источника постоянного напряжения через первичную обмотку w1 катушки зажигания протекает ток, нарастающий по экспоненте. В это время в первичной обмотке катушки запасается электромагнитная энергия. При размыкании контактов SA1 происходит разрыв цепи и благодаря запасенной энергии воз-никает ЭДС холостого хода. Она трансформируется во вторичную обмотку (1)2 катушки в виде импульса высокого напряжения, который используется для образования искры между электродами свечи.
Чем выше значение тока в момент разрыва контактов, тем мощнее импульс напряжения во вторичной обмотке. Это основной закон систем зажигания с накоплением энергии в индуктивности. Значение тока разрыва, в свою очередь, зависит от активного сопротивления цепи первичной обмотки (ее еще называют цепью низкого напряжения) и времени накопления, то есть времени замкнутого состояния контактов. Их размыкание происходит с помощью вращающегося кулачка и скользящей по нему пластмассовой «пяточки» подвижного контакта. Замыкание осуществляется благодаря тому, что этот контакт дополнительно подпружинен.
При размыкании контактов в самый начальный момент из-за ЭДС самоиндукции между контактами может возникать искра, которая значительно снижает напряжение на вторичной обмотке, да еще и приводит к интенсивному износу контактов. Для устранения этих недостатков параллельно контактам включается конденсатор С1. В первый момент после их размыкания ЭДС самоиндукции заряжает конденсатор, и к тому моменту, когда он зарядится, контакты разойдутся на такое расстояние, что искра между ними возникнуть уже не сможет. Емкость конденсатора выбирается оптимальной, так как большая снижает напряжение на вторичной обмотке, а малая не очень-то спасает от искрения.
В двухтактных двигателях кулачок находится на цапфе коленвала, в четырехтактных — на цапфе распределительного вала или шестерни.
Время накопления энергии зависит от угла замкнутого состояния контактов (УЗСК), который контролируется обычно косвенным путем — по зазору между контактами в разомкнутом состоянии (0,35…0,45 мм),
В рассматриваемом случае применена двухвыводная, или двухискровая катушка зажигания, благодаря которой удается произвести распределение искры по двум цилиндрам очень простым способом. Искровой разряд образуется на обоих выводах вторичной обмотки одновременно, однако рабочей искра будет только для того цилиндра, в котором заканчивается такт сжатия. В другом цилиндре, где заканчивается такт выпуска, искра будет чисто профилактической — для самоочистки свечи. На работоспособность двигателя в целом она не оказывает никакого влияния.
Батарейные системы зажигания с двухискровой катушкой применяются на мотоциклах «Урал», «Днепр», «Мото-Гуцци», «Харлей-Давидсон», БМВ.
Для одноцилиндрового двигателя используется одноискровая катушка, в которой обмотки соединены по автотрансформаторной схеме (рис. 26). Такие системы установлены на мотоциклах «ИЖ», «Ява», ЧЗ.
Для работы автономных систем зажигания не требуется посторонний источник напряжения— они питаются от своего собственного источника, который представляет собой, как правило, магнитоэлектрический «переменник».
По конструктивному исполнению автономные системы делятся на агрегатные и неагрегатные. Первые представляют собой законченную конструкцию, объединяющую в едином корпусе генератор, кулачок, прерыватель и катушку зажигания, у вторых, как правило, ротор и статор представляют собой отдельные детали, не имеющие собственного корпуса. Такие системы могут быть собраны только на конкретном двигателе.
Если «переменник» вырабатывает напряжение для питания только системы зажигания, то такая автономная система называется магнето. Если же вырабатывается еще и на-пряжение для питания систем освещения и сигнализации, то система носит название магдино.
Рассмотрим устройство и принцип действия агрегатного магнето
(рис. 3). Магнитная система включает в себя ротор, состоящий из постоянного магнита 1 и полюсов 2, две полюсные стойки статора 3 и сердечник высоковольтного трансформатора 4. Полюсные стойки и сердечник изготовлены из пластин электротехнической стали.
Электрическую цепь составляют первичная (w1) и вторичная (w2) обмотки трансформатора, прерыватель SA1, конденсатор С1 и кнопка выключения зажигания SA2.
При вращении ротора его полюса поочередно проходят мимо полюсных стоек 3, при этом магнитный поток (показан стрелкой) замыкается через сердечник высоковольтного трансформатора. Поскольку к полюсным стойкам подходят разные полюса, магнитный поток дважды изменяет свое направление за один оборот ротора (рис. 4). Изменяющийся как по величине, так и по напряжению, он пересекает витки обмоток трансформатора, наводя в первичной переменный ток напряжением 12…20 В, который течет по цепи «первичная обмотка — замкнутые контакты прерывателя — «масса» — первичная обмотка». В опре-деленный момент времени контакты размыкаются, и далее все процессы идут как в описанной выше батарейной системе.
Для получения максимальной величины напряжения вторичной обмотки необходимо синхронизировать момент размыкания контактов с максимумом амплитуды тока. Как видно из рисунка, он отстает от максимума амплитуды ЭДС на угол 8…10°. На такой же угол, называемый абрисом,смещают момент размыкания контактов относительно нейтрального положения магнита (рис. 5).
Выключается зажигание нажатием кнопки SA2. При этом первичная обмотка шунтируется и искрообразование прекращается. Кнопка обычно находится на корпусе магнето. Некоторые типы магнето имеют клемму для подключения кнопки дистанционного выключения зажигания.
Так действует одноискровое магнето. Существуют также двух- и четырехискровые магнето с низко- и высоковольтным распределением искры. Они применяются, например, нестационарных двигателях, тракторных «пускачах», мотопомпах.
Встраиваемые системы могут быть маховичными и роторными. В первом случае ротор представляет собой маховик с закрепленными на нем магнитами и полюсными башмаками. Вал маховика выполнен заодно с кулачком. На статоре закреплен сердечник высоковольтного трансформатора с обеими обмотками, конденсатор и контакты прерывателя (рис. 6). По-добными магнето оснащались бензопилы прежних лет выпуска.
Маховичные магдино содержат, кроме сердечника высоковольтного трансформатора, два-три сердечника с катушками питания систем освещения и сигнализации. Таким магдино оснащались мотоциклы «Паннония». Однако на большинстве магдино высоковольтный трансформатор выполняется в виде отдельной (выносной) катушки зажигания. Такими магдино оснащались мопеды «Рига», «Верховина», мотороллеры «Вятка», снегоходы «Буран» старых выпусков.
Роторные магнето и магдино представляют собой «переменники», устанавливавшиеся на «Мински» и «Ковровцы» прежних лет выпуска — Г-38, Г-401, Г-421, а также на велодвигатели Д-4, Д-5, Д-6.
Для регулирования угла опережения зажигания
используются центробежные регуляторы (в батарейных системах) или центробежные муфты (на агрегатных магнето). С увеличением частоты вращения коленвала угол опережения зажигания увеличивается, с уменьшением — уменьшается. Центробежными регуляторами оснащены мотоциклы «Урал», «Днепр», «ИЖ-49», мотороллеры Т-200, ТГ-200. Остальные мотоциклы и мопеды имеют постоянный угол опережения зажигания.
Достоинством контактных систем зажигания являются их простота и низкая стоимость. Однако имеется и масса недостат-ков, в первую очередь — износ пластмассовой «пяточки» и подгорание контактов прерывателя, что приводит к нарушению зазора между контактами. Из-за этого изменяется УЗСК, снижается выходное напряжение, на магнето и магдино «уходит» абрис и в результате нормальная работа двигателя нарушается.
Кроме того, из-за инерционности контактов ограничена максимальная частота вращения коленвала двигателя. Центро-бежный регулятор из-за износа деталей тоже вносит свою лепту в «увод» его характеристик. Поэтому приходится постоянно контролировать углы и зазоры. Все это, вместе взятое, привело к тому, что контактные системы в настоящее время «сходят со
сцены», уступая место более совершенным бесконтактным электронным. Промежуточным звеном между контактными и бесконтактными системами были комбинированные контактно — транзисторные и контактно-тиристорные.
В принципе на этой ноте я и окончу эту статью. Пользуйтесь на здоровье……

Читайте также:  Топ-5 стиральных машин с сушкой
Ссылка на основную публикацию