Работа солнечного коллектора

Солнечный коллектор: принцип работы и способы применения. Солнечные коллекторы для дома

Ежедневно от нашей ближайшей звезды на землю поступает столько энергии, сколько все человечество тратит в течение года в пересчете на ее ископаемые виды. Тепловая энергия переносится видимым светом и инфракрасным излучением.

Одной из попыток приручить неиссякаемый поток тепла и света из космоса является гелиосистема теплообмена. Медленно, но уверенно солнечные коллекторы для отопления дома приобретают популярность у потребителей и вытесняют традиционные источники отопления. А для набирающей обороты концепции умного дома это и вовсе неотъемлемая часть инженерного оборудования. В его широкой доступности играет роль повышение технологичности производства и, как следствие, снижение стоимости. Около 70 % мирового рынка использования гелиосистем приходится на Китай. В южных регионах этой страны едва ли не на каждой крыше можно увидеть солнечный коллектор. Цена изделий нашего восточного соседа гораздо ниже европейских, качество довольно приемлемое.

Сомнения прочь

В странах Средиземноморья, где количество солнечных дней – более 300 в году, солнечный коллектор для отопления и нагрева воды можно встретить практически на каждой крыше. Не вызывает сомнения эффективность использования этого источника тепла в южных регионах России. Климат средней полосы считается неблагоприятным для таких энергетических установок. Однако исследования и эксперименты доказывают целесообразность применения гелиосистем. Специальная работа была проведена в институте высоких температур Российской академии наук. Средние показатели интенсивности солнечного потока в зависимости от климатической зоны составляют 150-300 Вт/кв. м. Пиковые показатели достигают 1000 Вт/кв. м.

Исходными данными для расчета эффективности гелиосистемы было выбрано отношение поверхности в 2 кв. м коллектора к 100-литровому объему бака-накопителя. Вероятность ежедневного нагрева воды в системе оценивается следующими показателями:

  • до температуры +37 °С – 50-90 %;
  • до температуры +45 °С – 30-70 %;
  • до температуры +55 °С – 20-60 %.

Эти сухие цифры говорят о том, что в холодный период года солнечный коллектор даже при наименьшем количестве солнечных дней позволяет экономить до 60 % энергии для отопления дома.

Виды преобразователей солнечной энергии

Солнечный коллектор предназначен для преобразования энергии дневного светила в тепловую энергию. Применяемые материалы и конструктивные решения направлены на максимальное поглощение энергии солнца, преобразование ее в тепловую и эффективную передачу для дальнейшего использования. В качестве теплоносителя используется как специальная незамерзающая жидкость, так и атмосферный воздух. Циркуляция теплоносителя бывает принудительной и естественной. В том случае если применяется естественная, конвекционная, система теплообмена, солнечный коллектор должен располагаться ниже бака-аккумулятора, например на прилегающем земельном участке. Такая схема применяется при необходимости отопления небольших или временных помещений. Объемные системы требуют использования насоса для циркуляции жидкости. Такую схему можно использовать и для устройства системы горячего водоснабжения.

Схема гелиоустановки

Система отопления состоит из следующих компонентов:

  • Солнечный коллектор преобразует энергию солнца в тепловую.
  • Подающая магистраль доставляет теплоноситель в бак-накопитель.
  • Электронасос осуществляет циркуляцию жидкости-теплоносителя.

В баке-накопителе происходит передача тепла от контура гелиоустановки контуру паровой системы отопления дома. В этой емкости может быть размещен дублирующий нагревательный элемент, который автоматически включается, если погодные условия не способствуют нагреву теплоносителя до заданных параметров. Жидкость гелиоустановки соответствует противоречивым требованиям. Она должна быть морозоустойчивой, но в то же время не испаряться при высокой температуре и не быть токсичной. В большинстве установок используется теплоноситель, состоящий из 60 % дистиллированной воды и 40 % гликоля. Автоматика позволяет без участия человека поддерживать нужную температуру внутри помещения и не допускать перегрева теплоносителя.

Вакуумный солнечный коллектор

Вакуумные системы имеют довольно сложное устройство. Основным рабочим элементом является дорогостоящая светопоглащающая трубка особой конструкции. В основу положен принцип термоса. Поверхность вакуумной трубки прозрачная. Она пропускает солнечный свет на внутреннюю трубку. Из пространства между ними откачан воздух, отсутствие газа позволяет сохранять до 97 % тепла.

В нижней части внутренней трубки находится теплоноситель – жидкость, которая при нагревании быстро переходит в газообразное состояние. В верхней части трубки происходит передача тепла коллектору, при этом теплоноситель охлаждается и, конденсируясь, возвращается в изначальное состояние. Системы с использованием вакуумных трубок обладают довольно высоким КПД при температуре ниже -37 °С и плохой освещенности. Это оборудование требует своевременной очистки от снега и монтажа строго под определенным углом. Также периодически прозрачные сегменты следует очищать от загрязнения. Вакуумный солнечный коллектор специально разрабатывался для северных широт. Он эффективно работает при отсутствии прямых солнечных лучей.

Плоский гелиопреобразователь

Плоский солнечный коллектор представляет собой автономную панель, состоит из трех компонентов:

  • Поглотитель солнечного излучения. Его красят черной краской или наносят специальное покрытие.
  • Верхнее прозрачное покрытие. Изготавливается из закаленного стекла или поликарбоната.
  • Система трубок, посредством которой прогревается циркулирующий в ней теплоноситель. Как правило, делается из меди.

Задняя сторона панели имеет эффективное теплоизоляционное покрытие. Одна или несколько таких панелей подключаются к подающей линии бака-аккумулятора. Этот вид системы имеет сравнительно низкую стоимость и хорошую производительность в теплые сезоны. Минусом является низкая эффективность при отрицательных температурах и ощутимые теплопотери.

Коллектор-концентратор

В южных широтах, где наибольшее количество ясных дней, получил распространение так называемый концентратор. Он представляет собой систему параболических отражателей, расположенных на одной криволинейной поверхности и концентрирующих солнечный свет в определенной точке. Для наибольшей эффективности требуется изменение положения в двух плоскостях вслед за движением солнца по небосводу в течение дня. Солнечные коллекторы для отопления дома такой конструкции не применяются.

В быту и на работе

Применение гелиоустановок решает проблемы с отоплением при ограниченном доступе к газу или электричеству, при недостаточной мощности центрального электроснабжения; в качестве вспомогательной системы отопления, горячего водоснабжения дома, коттеджа, дачи, бассейна позволяет сэкономить значительные средства владельцам. Область применения самая различная:

  • отопление производственных помещений;
  • отопление и горячее водоснабжение жилых зданий, предназначенных для постоянного и временного проживания.
  • отопление учреждений здравоохранения, туристических баз, спортивных комплексов, небольших автономных магазинов.
  • обогрев открытых и закрытых бассейнов;
  • отопление и горячее водоснабжение временных жилых и рабочих помещений.

Воздушная гелиосистема

Отопительная система может в качестве теплоносителя использовать не только жидкость, но и атмосферный воздух. Воздушный солнечный коллектор применяется для обогрева всех типов помещений и в зависимости от конструкции бывает трех типов:

  • Плоский имеет схожие принципы с подобной жидкостной конструкцией.
  • Пирамидальный использует сложную систему отражающих поверхностей.
  • Венецианские жалюзи располагаются между переплетами стекла и направляют теплый воздух в помещение. Применяется при ленточном остеклении зданий.

В отличие от жидкостных устройств воздушный солнечный коллектор может быть изготовлен из неметаллических материалов.

Солнечная система для горячего водоснабжения

Систему горячего водоснабжения можно подключить к баку-аккумулятору. Бак, таким образом, будет играть роль бойлера, в котором, в свою очередь, роль электрического тэна будет играть теплообменная спираль, включенная в контур системы обогрева. Посредством спирали теплоноситель начнет нагревать воду в баке. Таким образом, схема водоснабжения будет накопительной или проточно-накопительной.

Солнечный коллектор своими руками

Простейший солнечный преобразователь предусматривает непосредственную передачу тепла солнечного света циркулирующий внутри системы труб воде. Подобную продукцию производила отечественная промышленность в начале этого века. Солнечные коллекторы для дома изготавливались из медной трубки диаметром до 20 мм. Для удобства монтажа и использования она закручивалась в плоскую спираль, имеющую на обоих концах штуцер для подсоединения магистрального трубопровода либо просто садового шланга. Такую спираль можно было разместить на скате крыши дачного домика. Объема горячей воды вполне хватало, чтобы принять душ в конце дня и помыть посуду. Подобный солнечный коллектор своими руками можно сделать из черной пластиковой трубы. Плоский гелиопреобразователь изготавливается с помощью теплообменника от старого холодильника.

Установка коллектора

Сложность эксплуатации солнечной системы в том, что эффективность зависит от высоты солнца над горизонтом, времени года и суток, наличия облачности, влажности и температуры окружающего воздуха. Солнечный коллектор для отопления помещения в горизонтальной плоскости должен быть ориентирован строго на юг. Отклонения в сторону запада или востока допускаются в пределах 40°. При этом эффективность установки снизится примерно до 20 %. Важную роль играет угол наклона, который должен составлять от 35 до 45°.

Самым разумным вариантом является на стадии проектирования нового жилища предусмотреть, что на крышу будет установлен солнечный коллектор. Цена на подобное оборудование значительно выше, чем на привычное паровое отопление. Но затраты с лихвой оправдаются последующей эксплуатацией. Срок окупаемости, если дом утеплен в соответствии со всеми нормами и правилами, в среднем составляет пять лет.

Вакуумный солнечный коллектор: принцип работы + как собрать самому

На горячее водоснабжение и отопление помещений тратятся немалые средства. Но существует альтернативный источник энергии – вакуумный солнечный коллектор. Слышали о таком? Он позволяет существенно снизить финансовые затраты на поддержание комфорта, обеспечивая максимальный греющий эффект при минимальных теплопотерях.

Этот прибор можно купить у производителей бытового оборудования или собрать самостоятельно в домашних условиях. Чтобы выбрать подходящую модель, предстоит изучить немало информации. Мы поможем вам определиться с основными критериями покупки.

В статье речь пойдет о принципе работы и устройстве вакуумного коллектора. Мы расскажем о конструкционных особенностях различных моделей, рассмотрим плюсы и минусы этих установок. Кроме того, подробно опишем, как сделать и установить вакуумный солнечный коллектор самостоятельно.

Материал сопровождается видеороликами, из которых вы узнаете о важных особенностях и принципах работы вакуумных коллекторов.

Принцип работы вакуумного агрегата

От обычных гелиосистем вакуумный солнечный коллектор отличается способом переработки солнечной энергии. Классическая батарея просто принимает свет и преобразовывает его в электричество. Коллектор же состоит из стеклянных трубок с воссозданным внутри вакуумом. В единую систему они объединяются посредством специальных стыковочных узлов.

Внутри каждой трубки располагается канал из одного или двух медных стержней с теплоносителем. Улавливая солнечные лучи, действующий элемент нагревает материал-теплоноситель, таким способом обеспечивая работу коллектора.

За счет такой конструкции уровень энергоотдачи значительно возрастает, а теплопотери существенно снижаются, так как вакуумная прослойка позволяет сохранить около 95 % улавливаемой солнечной энергии.

Кроме того, уменьшается зависимость производительности коллектора от сезонности, температуры окружающей среды и различных погодных условий, как то: порывы ветра, переменная облачность, выпадение осадков и пр.

Как устроен коллектор вакуумного типа?

Современные вакуумные приборы, обеспечивающие помещения теплом и горячей водой за счет солнечной энергии, технологически разнятся.

Коллекторы подразделяют на такие виды:

  • трубчатый без стеклянного защитного покрытия;
  • модуль с редуцированной конверсией;
  • стандартный плоский вариант;
  • устройство с прозрачной теплоизоляцией;
  • воздушный агрегат;
  • плоский вакуумный коллектор.

Все они имеют общее конструктивное сходство, так состоят из:

  • внешней прозрачной трубы, откуда полностью выкачан воздух;
  • нагреваемого патрубка, расположенного в большой трубе, где перемещается жидкий или газообразный теплоноситель;
  • одного или двух сборных распределителей, к которым присоединяются трубы большего калибра и входит циркуляционный контур тонких, размещенных внутри, трубок.

Целиком конструкция чем-то напоминает термос с прозрачными стенками, в котором выдержан беспрецедентно высокий уровень тепловой изоляции. Благодаря этой особенности корпус внутренней трубки приобретает способность качественно прогреваться и полноценно отдавать энергетический ресурс циркулирующему внутри теплоносителю.

Конструкционные нюансы и классификация

Коллекторы вакуумного типа классифицируют по виду стеклянных трубок, установленных в конструкции, либо по характеристикам тепловых каналов. Трубки обычно бывают коаксиальными и перьевыми, а тепловые каналы – U-образными прямоточными и heat pipe типа. .

Характеристика коаксиальных трубок

Коаксиальные трубки представляют собой двойную стеклянную колбу-термос с искусственно созданным между стенками вакуумным пространством. Внутренняя поверхность трубки имеет слой специального теплопоглащающего покрытия, поэтому фактическая передача тепла происходит непосредственно от стенок стеклянной колбы.

В качестве поглощающего элемента в стеклянную трубку впаивают медную трубку, содержащую эфирный состав. В процессе нагревания он испаряется, эффективно отдает свое тепло, конденсируется и стекает на нижнюю часть трубки. Затем цикл повторяется, создавая таким образом непрерывный процесс теплообмена.

Особенности перьевых трубок

Вакуумные перьевые трубки имеют большую толщину стенок, нежели коаксиальные, и состоят не из двух, а из одной колбы. Внутренний абсорбционный элемент из меди снабжается по всей длине прочным усилителем – гофрированной пластиной с высокоуровневым энергопоглощающим напылением.

Благодаря такой конструкционной особенности вакуум располагается непосредственно в тепловом канале, часть которого вместе с абсорбентом интегрируется непосредственно в колбу.

Коллекторы, изготовленные на основе перьевых вакуумных трубок, считаются наиболее эффективными в своем классе, отлично справляются с поставленными задачами и надежно служат в течение многих лет.

Принцип работы теплового канала heat pipe

Тепловые каналы heat pipe состоят из закрытых трубок, содержащих легко испаряющийся жидкий состав. Под воздействием солнечных лучей он прогревается, переходит в верхнюю область канала и сосредотачивается там в специальном теплосборнике (manifold).

Рабочая жидкость в этот момент отдает все накопленное тепло и снова опускается вниз для возобновления процесса.

Гильза теплообменника heat-pipe соединяется с теплообменником manifold’а посредством специального гнезда, впаянного в сам в 1-трубный теплообменник, либо огибается 2-трубным теплообменником.

Выделенную энергию из теплового резервуара отбирает теплоноситель и переносит ее дальше по системе, обеспечивая таким способом наличие горячей воды в кранах и батареях отопления. Система heat pipe легко монтируется и демонстрирует высокую эффективность при работе.

Читайте также:  Нагреватель воды на кран: особенности устройства и принцип работы

В случае поломки или выхода из строя без всяких сложностей существует возможность заменить испорченный узел на новый, не прибегая к реконструкции всей системы.

Ремонтные работы можно легко осуществить прямо на месте расположения коллектора, не демонтируя агрегат и не прикладывая к работе излишних усилий.

Описание U-образного прямоточного теплообменника

Трубка прямоточного теплообменника имеет форму буквы U. Внутри циркулирует вода или рабочий теплоноситель греющей системы. Одна часть элемента предназначается для холодного теплоносителя, а вторая корректно отводит уже нагретый.

При накаливании действующий состав расширяется и поступает в бак накопления, создавая таким образом естественную циркуляцию жидкости в системе. Специальное селективное покрытие, нанесенное на внутренние стенки, увеличивает теплопоглощающую способность и повышает эффективность системы в целом.

Трубки U-типа демонстрируют высокую производительность и дают солидную теплоотдачу, но при этом имеют один существенный недостаток. Они составляют одну целостную конструкцию с manifold’ом и всегда монтируются вместе с ним.

Заменить отдельную одиночную трубку, вышедшую из строя, не получится. Для ремонта потребуется демонтировать весь комплекс полностью и на его место поставить новый.

Сравнение различных модификаций

При изготовлении гелиоагрегатов тепловые каналы и вакуумные стеклянные трубки для солнечных коллекторов комбинируют в самых разных сочетаниях.

Самой большой популярностью у потребителей пользуются коаксиальные модели с тепловым каналом heat pipe. Покупателей привлекает лояльная цена приборов и очень простое, доступное обслуживание в течение всего срока эксплуатации.

Вакуумные приборы с каналами heat pipe демонстрируют высокую надежность и не имеют никаких ограничений по использованию даже в высоконапорных гелиотермальных комплексах.

Приборы с коаксильной колбой, содержащей прямоточные U-образные каналы, тоже входят в перечень востребованных. Их характеризуют такие параметры, как низкая теплопотеря и КПД от 70% и выше.

Ситуацию несколько портят: сложный процесс ремонта, специфическое обслуживание в процессе эксплуатации и невозможность заменить отдельный испорченный узел. Если с прибором что-то случается, его демонтируют и на место ставят абсолютно новый коллектор.

Перьевые трубки конструкционно представляют собой одинарный цилиндр из стекла с утолщенными прочными стенками (в зависимости от производителя от 2,5 мм и выше). Содержащаяся внутри вставка из перьевого абсорбента плотно облегает рабочий канал, изготовленный из теплопроводящего металла.

Почти безупречную изоляцию создает вакуумное пространство внутри стеклянной емкости. Абсорбент передает поглощенное тепло без потерь и обеспечивает системе КПД до 77%.

Модели с перьевым элементом стоят несколько дороже, нежели коаксиальные, но за счет высокой эффективности обеспечивают полноценный комфорт в помещении и быстро окупаются.

Наиболее эффективными и производительными являются перьевые колбы с внутренними прямоточными каналами. Их фактический КПД порой достигает рекордных показателей в 80%.

Цена изделий довольно высока, а при проведении ремонта обязательно требуется сливать из системы весь теплоноситель и только потом приступать к устранению неполадок.

Каким должен быть теплосборник?

Теплосборник – еще один очень важный рабочий элемент вакуумного коллектора. Посредством этого узла осуществляется передача накопленного тепла от трубок к теплоносителю.

Теплосборник располагают в верхней части прибора. Один из его компонентов, медный сердечник, принимает энергию и передает ее основному теплоносителю, циркулирующему в замкнутой системе «теплообменник бака-коллектор».

Корректную работу гарантирует подключенный к системе циркуляционный насос. Управляющая греющим комплексом автоматика, четко следит за уровнем температуры в каналах и, в случае ее падения ниже допустимого критического минимума (например, в ночное время суток), останавливает работу насоса.

Это позволяет избежать обратного прогрева, когда теплоноситель начинает забирать тепло горячей воды, собравшейся в накопительном баке.

Плюсы и минусы коллекторов вакуумного типа

Главным достоинством агрегатов называют практически полное отсутствие теплопотерь в процессе эксплуатации. Это обеспечивает вакуумная среда, являющаяся одним из самых качественных естественных изоляторов. Но на этом список преимуществ не заканчивается.

Солнечный коллектор для отопления дома

Солнечный коллектор – это техническое устройство, служащее для преобразования солнечной энергии в тепловую. По типу теплоносителя, солнечные коллекторы подразделяются на воздушные и жидкостные, в которых теплоносителем служит вода или иное жидкое вещество (антифриз, этиленгликоль и подобные). По конструкции, данные устройства, бывают плоские и вакуумные.

Принцип действия

Для отопления жилого дома или иного объекта могут быть использованы все виды солнечных коллекторов, однако принцип их работы, вне зависимости от конструкции и вида теплоносителя, является единым.

Принцип работы солнечного коллектора основан на способности материалов поглощать энергию солнца в видимом и невидимом, человеческому глазу, диапазонах, в связи с чем, внутри данного материала, начинаются физические процессы, молекулы начинают быстрее двигаться, материал (вещество) – нагревается. Тепло выделяемое материалами, на которые воздействуют солнечные лучи, передается теплоносителя для последующего использования.

Схематично, принцип работы различных видов устройств, можно отразить следующим образом:

  1. Плоский солнечный коллектор, работающий с использование жидкого теплоносителя:
  2. Плоский солнечный коллектор, работающий с использование воздуха:
  3. Вакуумный солнечный коллектор, с жидким теплоносителем:

В соответствии с конструкцией, видом теплоносителя и способу его использования и передачи тепла, солнечные коллекторы бывают:

По типу конструкции:

  • Плоские – представляют из себя конструкцию в виде прямоугольника (коробки), выполняемую из прочного материала и служащую корпусом устройства. Во внутренне пространство корпуса укладывается изоляция, по поверхности которой монтируется абсорбирующая (поглощающая тепло) пластина. В специальные углубления абсорбера, укладываются трубки (как правили изготовленные из меди), в которые, в дальнейшем, подается теплоноситель. С наружной стороны корпус закрывается поглощающей оболочкой и защитным стеклом.
  • Вакуумные – в устройстве данного типа, определенное количество вакуумных трубок, объединены в общем корпусе коллектора. В корпусе устроен теплообменник, в котором теплоноситель, циркулирующий во внутреннем контуре вакуумных трубок, передает полученную энергию, теплоносителю наружного контура.

По типу теплоносителя:

По способу использования теплоносителя:

  • Пассивные – солнечный коллектор используется в паре с баком накопителем, и служит для горячего водоснабжения, без устройства дополнительных инженерных элементов сети (циркуляционный насос, элементы защиты и т. д.).
  • Активные – система, кроме монтажа коллектора, комплектуется техническими устройствами (насос, защитные клапана, бак накопитель, дополнительные элементы нагрева теплоносителя), и может использоваться как для горячего водоснабжения, так и для отопления помещений.

По способу передачи тепла:

  • Косвенного действия, когда в системе отопления (горячего водоснабжения), присутствует бак-аккумулятор (накопитель), в котором происходит передача тепловой энергии, полученной, наружным контуром, от солнечных лучей, и передаваемой внутреннему контуру, циркулирующему в системах ГВС и отопления.
  • Прямого действия, прямоточные – данный способ используется в системах ГВС, при этом циркуляция воды, в контуре коллектора, осуществляется под воздействием разности температур и путем установки дополнительных элементов (кранов, клапанов и т. д.).

Как работает зимой?

В системах отопления, как правило, используются вакуумные коллекторы, это определяется их техническими характеристиками и условиями эксплуатации.

Основной элемент вакуумного солнечного коллектора – это вакуумная трубка, которая состоит из:

  • Изоляционной трубки, выполненной из стекла или иного материала, пропускающего солнечные лучи с минимальными потерями их мощности;
  • Медной, тепловой трубки, помещенной во внутреннее пространство изоляционной трубки;
  • Алюминиевой фольги и поглощающего слоя, расположенных между трубками;
  • Крышкой изоляционной трубки, являющейся уплотнительной прокладкой, обеспечивающей вакуум во внутреннем пространстве устройства.

Работа системы осуществляется следующим образом:

  1. Под воздействием солнечной энергии, теплоноситель контура трубки, испаряется и поднимается вверх, где в теплообменнике коллектора конденсируется, передает свое тепло теплоносителю наружного контура, после чего стекает вниз, и процесс повторяется.
  2. Теплоноситель наружного контура, из теплообменника солнечного коллектора, подается на бак-аккумулятор, где происходит передача полученной тепловой энергии теплоносителю системы отопления и горячего водоснабжения.
  3. Циркуляция теплоносителя наружного контура осуществляется путем установки циркуляционного насоса и систем автоматики, обеспечивающей работу системы в автоматическом режиме.
  4. В комплекс системы автоматики входит контроллер, датчики и элементы управления, обеспечивающие установленные параметры работы системы (температура, расход жидкости в системе ГВС и т. д.)

Для того, чтобы данная система была эффективна и справлялась с выполнением поставленных задач, в том числе и в зимний период, системой предусматривается установка дублирующих источников энергии. Это может быть дополнительная система нагрева, с использованием теплоносителя, как на приведенной схеме, когда теплоноситель дополнительного контура нагревается путем использования различных видов топлива (газ, биотопливо, электричество). Также, с подобную задачу можно выполнить путем установки электрических ТЭНов, непосредственно в бак-аккумулятор. Работу дублирующих источников энергии контролирует система автоматики, включая в работу данные устройства, по мере необходимости.

Выгодно ли это

Определить, выгодно ли использовать солнечные коллекторы, каждый определяет для себя индивидуально, в зависимости от региона проживания, потребности в тепловой энергии и в зависимости от финансовых возможностей.
Регион проживания – это важный критерий, при определении эффективности использования устройств, служащих для преобразования энергии солнца в другие виды энергии. Солнечная активность (продолжительность солнечного сияния), в разных регионах нашей страны разная, что видно на приведенной ниже схеме.
Из данной схемы видно, что наиболее благоприятные регионы, для использования солнечной энергии, с продолжительностью солнечной активности более 2000,0 часов в год, расположены в южных районах страны. В этих районах также не бывает холодных и продолжительных зим, что определяет возможность успешного использования солнечных коллекторов в системах отопления и горячего водоснабжения, именно в этих областях России.

При необходимости создать абсолютно автономную систему, от внешних, традиционных поставщиков тепловой энергии, следует помнить, что, установив только коллектор, создать подобную систему не получится, т. к. для создания циркуляции теплоносителя, работы системы автоматики, необходима электрическая энергия. Поэтому, для полной автономии, необходимо проработать вопрос по независимому электроснабжению подключаемого объекта. Следовательно, для того, чтобы сделать абсолютно независимую систему, потребуются дополнительные финансовые затраты, что увеличит срок окупаемости оборудования.

Как сделать своими руками

Наиболее простой, но тем не менее эффективный вариант, это плоский солнечный коллектор, в котором в качестве теплоносителя используется вода.
Из имеющихся под рукой материалов, изготавливается корпус устройства. Это может быть дерево, профильный черный или цветной металл. Размеры каркаса определяются местом установки солнечного коллектора, его назначением и наличием требуемых материалов.

Во внутреннее пространство корпуса укладывается утеплитель, поверх которого укладывается медная трубка. Для создания большей поглощающей площади, трубку укладывают в форме змеевика. Чтобы увеличить КПД устройства, под трубку можно положить слой фольги (на схеме не показано), это позволит снизить тепловые потери в нижнюю сторону устройства и увеличит температуру во внутреннем пространстве корпуса.

С наружной стороны корпус закрывается защитным стеклом, щели герметизируются. В местах ввода и выхода труб, монтируются патрубки холодной и горячей воды.
Изготовленной таким образом устройство, можно использовать для горячего водоснабжения летнего душа и подогрева воды в бассейне, для этого патрубки коллектора подключаются к выбранным системам, после чего устройство готово к работе.

Плюсы и минусы

Как у любого технического устройства, так и у солнечного коллектора, есть свои плюсы и минусы, как по возможности использования и эксплуатации, так и по иным параметрам и показателям. В зависимости от конструкции устройства, плюсы и минусы, разнятся, поэтому необходимо их рассмотреть в отдельности друг от друга.

Плоские солнечные коллекторы.

Достоинства использования:

  1. При использовании в южных регионах с теплым климатом, наилучшие показатели в соотношении цена – производительность;
  2. При осадках в виде снега, имеют способность к самоочищению;
  3. Обладают высоким КПД, при использовании в летний период;
  4. Относительно низкая стоимость, в сравнении с аналогами другой конструкции.

Недостатками являются:

  1. Значительные тепловые потери, вызванные конструктивными особенностями устройства;
  2. Низкий КПД при работе в осенне-весенний период;
  3. Сложность транспортировки и монтажа готовых изделий;
  4. Высокая парусность конструкции, создает опасность повреждения ее элементов, в процессе эксплуатации;
  5. Сложность и трудозатратность выполнения ремонтных работ.

Вакуумные солнечные коллекторы.

Достоинства использования:

  1. При использовании в регионах с холодным и умеренным климатом, наилучшие показатели в соотношении цена – производительность;
  2. Незначительные тепловые потери, в процессе эксплуатации, в сравнении с аналогами другой конструкции;
  3. Способность работать при низких и отрицательных температурах окружающего воздуха;
  4. Способность работать при низкой солнечной активности в утренние и вечерние часы, а также при отсутствии прямых солнечных лучей (пасмурная погода);
  5. Легкий и удобный монтаж, транспортабельность конструкций;
  6. Надежность в процессе эксплуатации.

Недостатками являются:

  1. Относительно высокая стоимость;
  2. Жесткие требования к монтажу, определяющие расположение коллектора в пространстве по отношению к поверхности земли.


Солнечный коллектор

Энергия для тепловых насосов поступает из грунта, воды или воздуха, которые согревает солнцем. Тепло для котлов образуется вследствие сгорания, которое также представляет собой продукт преобразования солнечной энергии в ходе длительной эволюции Земли. А вот гелиоколлекторы можно назвать уникальными: они получают энергию прямо от солнца.
Чтобы получить возможность полностью бесплатно греть воду для ГВС или получать тепло для отапливания дома, можно приобрести солнечный коллектор. Учитывая немалую стоимость такого оборудования, очень важно правильно выбрать это устройство.

Особенности солнечных коллекторов

Основная особенность таких коллекторов, которая отличает их от теплогенераторов других видов, заключается в цикличности их работы. Отсутствует солнце – отсутствует и тепловая энергия. Следовательно, ночью подобные установки не активны.
Среднесуточное количество тепла непосредственно зависит от длительности светового дня, которая зависит от географической широты местности, а также от времени года. К примеру, летом на территории северного полушария приходится пик инсоляции, и коллектор будет работать с максимальной отдачей. Тогда как зимой уровень его продуктивности снижается. А самый минимум наблюдается в декабре-январе.
Стоит отметить, что зимой эффективность гелиоколлекторов падает еще и вследствие изменения угла падения солнечных лучей. Изменения производительности солнечного коллектора на протяжении года необходимо принимать во внимание в процессе расчетов его вклада в систему теплоснабжения.

Читайте также:  Virgo смесители – когда цена уступает качеству

Работа солнечных коллекторов

Главный элемент такого устройства – адсорбер, который представляет собой пластину из меди, с приваренной к ней трубой. Во время поглощения тепла попадающих на нее солнечных лучей, пластина вместе трубой быстро нагреваются. Далее тепло поступает в циркулирующий по трубе жидкий теплоноситель, который передает тепло далее по системе.
То, насколько сильно физическое тело может поглощать или отражать солнечные лучи зависит, главным образом, от структуры его поверхности. К примеру, зеркальная поверхность прекрасно отражает свет и тепло, тогда как черная, наоборот, поглощает. По этой причине медная пластина адсорбера должна быть покрыта черной краской.
Принцип работы:

  1. солнечный коллектор
  2. буферный бак
  3. горячая вода
  4. холодная вода
  5. котроллер
  6. теплообменник
  7. помпа
  8. горячий поток
  9. холодный поток.

Повысить объем получаемого солнечного тепла можно при помощи грамотного выбора стекла, которое будет прикрывать адсорбер. Простое стекло не имеет нужного уровня прозрачности. Помимо того, ему свойственно отражать определенную часть попадающего на него солнечного света. При создании гелиоколлекторов, чаще всего, применяется особый вид стекла, имеющий низкое процентное количество железа, вследствие чего увеличивается уровень его прозрачности. Чтобы снизить количество отраженного поверхностью света стекло покрывают антибликовым покрытием. А для предотвращения попадания внутрь коллектора пыли и влаги, снижающих пропускную возможность стекла, корпус должен быть полностью герметичным. В некоторых видах коллекторов корпус заполнен инертным газом.
Несмотря на все вышеперечисленное, солнечные тепловые коллекторы, все же не могут похвастаться КПД на уровне 100%. Некоторую часть полученного тепла нагретая пластина адсорбера отдает окружающей среде, вследствие чего нагревается воздух. Для минимизирования уровня теплопотерь, адсорбер должен быть изолирован. В поиске наиболее эффективного метода теплоизоляции адсорбера инженеры разработали несколько разных видов солнечных коллекторов.

Плоские солнечные коллекторы

Плоский коллектор солнечной энергии имеет довольно простую конструкцию. Он состоит из металлического короба, покрытого сверху стеклом. В роли теплоизолирующего материала для дна и стенок корпуса, применяют минеральную вату. Этот вариант далек от идеального, потому что тепло переносится от адсорбера к стеклу через воздух, находящийся внутри короба. Если температура внутри коллектора и снаружи сильно отличаются, то наблюдаются серьезные потери тепла. Таким образом, плоский гелиоколлектор лучше использовать в летнее время. Плоский коллектор состоит из следующих компонентов:

  1. впускной патрубок
  2. защитное стекло
  3. абсорбционный слой
  4. алюминиевая рама
  5. медные трубки
  6. теплоизолятор
  7. выпускной патрубок.

Вакуумный солнечный коллектор

Устройство солнечного коллектора такого типа представлено панелью, которая состоит из большого количества довольно тонких трубок из стекла. Каждая трубка заполнена адсорбером. Для предотвращения переноса тепла газом (воздухом), трубки вакуумируют. Таким образом, вследствие отсутствия газа около адсорберов, вакуумные коллекторы характеризуются незначительными теплопотерями даже при условии морозной погоды. Такая система солнечных коллекторов состоит из:

  1. теплоизоляции
  2. корпуса теплообменника
  3. теплообменника (коллектора)
  4. герметичной пробки
  5. вакуумной трубки
  6. конденсатора
  7. поглощающей пластины
  8. тепловой трубки с рабочей жидкостью.

Использование солнечных коллекторов

Основным назначением солнечных коллекторов, как и любых других теплогенераторов, является отопление домой и подготовка воды для системы горячего водоснабжения. Нужно сделать правильный расчет солнечного коллектора.
Плоские модели демонстрируют высокую производительность только в весенне-летний период. Следовательно, подключение солнечных коллектором такого типа для отопления дома зимой, попросту нецелесообразно. Но, и ему найдется применение. Главное их достоинство – это доступная стоимость, ведь они намного дешевле вакуумных моделей. Таким образом, если вы планируете использовать солнечную энергию только летом, то стоит купить именно плоский коллектор. Они прекрасно подходят для подогрева до комфортной температуры воды в открытом бассейне.
Трубчатые вакуумные коллекторы можно назвать более универсальными. Их можно активно использовать круглый год. Поэтому они подходят как для горячего водоснабжения, так и для системы отопления.
Стоит отметить, что коллектор необходимо располагать на открытом пространстве, куда не падает тень от соседних построек, деревьев, и прочих объектов. Наиболее солнечной стороной в нашем северном полушарии является южная, следовательно, «зеркала» коллектора нужно размещать строго на юг. Если же по техническим причинам это невозможно, нужно выбрать направление, которое максимально приближено к южному, – юго-западное или юго-восточное.
Также не забывайте про угол наклона гелиоколлектора. Величина угла находится в зависимости от отклонения положения Солнца от зенита, определяемого географической широтой той местности, где будет установлено оборудование. При неправильном выборе угла наклона, значительно возрастают оптические потери энергии, потому что большая часть солнечных лучей будет отражаться от стекла коллектора и, не попадет на абсорбер.

Как выбрать солнечный коллектор?

Чего мы ждем от солнечного коллектора? Чтобы отопительная система коттеджа справлялась с задачей поддержания в комнатах комфортной температуры, а из кранов текла горячая, а не чуть теплая вода. Для полноценного использования солнечного коллектора, необходимо до покупки рассчитать требуемую мощность оборудования. Стоит обязательно принять во внимание:

  • назначение коллектора (ГВС, отопление или их комбинация)
  • потребность здания в тепле (общий размер обогреваемых помещений или среднесуточные затраты горячей воды)
  • климатические особенности региона
  • особенности монтажа коллектора.

Производство солнечных коллекторов не обходится без маркировки на них конкретного уровня производительности. Компании, которые занимаются изготовлением солнечных коллекторов, предоставят вам более полную информацию об изменении мощности оборудования в зависимости от географической широты населенного пункта, угла наклона «зеркал», отклонения их ориентации от южного направления и другие.
В процессе выбора уровня мощности коллектора очень важно достичь баланса между недостатком и избытком накапливаемого тепла. Эксперты советуют отталкиваться от максимально возможной мощности коллектора, т. е. пользоваться во время расчетов самым продуктивным летним сезоном. Однако, этот вариант противоположен мнению среднестатистического пользователя о том, что нужно покупать оборудование с запасом (т. е. вести расчеты по мощности самого холодного месяца), чтобы тепла от коллектора хватило и в менее солнечные осенние и зимние дни.
Но, если идти таким путем, то на пике его производительности, т. е. в летом, у вас возникнет серьезная проблема: тепла будет генерироваться больше, чем использоваться. Все это может стать причиной перегрева контура и других неприятностей. Есть два варианта решения этакой проблемы:

  • установка маломощного солнечного коллектора с подключением в зимние месяцы резервных источников тепла
  • покупка модели с большим запасом по мощности и предусмотрением варианта сброса избыточного тепла в теплое время года.

Другие компоненты системы

Мало просто собрать отдаваемое солнцем тепло. Необходимо его передать, накопить, доставить потребителям, необходим контроль за всеми этими процессами. Следовательно, кроме находящихся на крыше коллекторов в системе присутствует большое количество других компонентов, которые менее заметны, но не менее важны. Рассмотрим наиболее значимые из них:

  • теплоноситель. Роль теплоносителя в контуре коллектора выполняет или вода, или незамерзающая жидкость. При этом, предпочтительнее покупать модели именно с незамерзающей жидкостью. При отрицательных температурах она не застывает. Тогда как вода, застывшая в трубах, приведет к разрыву контура. Кроме этого, недостаточно высокая температура кипения воды поводом частых стагнаций в летнее время. «Незамерзайку» нужно только предохранять от чрезмерного перегрева
  • насос, адаптированный для гелиосистем. Чтобы гарантировать принудительную циркуляцию теплоносителя по контуру коллектора понадобится насос, адаптированный для гелиосистем
  • теплообменник для ГВС. Передача тепла от контура гелиоколлектора к воде, находящейся в ГВС, или к теплоносителю системы отопления происходит при помощи теплообменника. Чаще всего, чтобы накопить горячую воду устанавливают резервуар большого объема, в комплекте с которым идет теплообменник. Более рациональным является использование баков с двумя и более теплообменниками. Таким образом, вы сможете забирать тепло не только у солнечного коллектора, но и у других источников, к примеру, у газового или электрического котла, теплового насоса
  • автоматика. Такая сложная система не может существовать без автоматики, которая контролирует все стадии процесса. Контроллер дает возможность автоматически осуществлять анализ температуры в контуре и накопительном резервуаре, управлять насосом и клапанами, которые отвечают за движение теплоносителя по контуру. В случае перегрева теплоносителя в контуре и воды в баке контроллер подаст сигнал к сбросу тепла в дополнительный теплоприемник – еще один бак с водой или уличный воздушный теплообменник. Когда вечером температура воды в накопительной емкости превышает температуру теплоносителя в контуре коллектора, то автоматика останавливает циркуляцию теплоносителя по контуру, чтобы предотвратить выброс накопленного тепла в атмосферу через сам коллектор. Новейшие технологии позволяют удаленно контролировать работу системы и при необходимости вносить корректировки.

Конечно, можно самостоятельно подобрать все компоненты системы. Вполне реально создать полноценную систему из купленных по отдельности элементов. Но, существуют и готовые решения – комплекты, в составе которых есть коллектор, насосы, накопительные резервуары, управляющая автоматика и т. д. Покупка готового комплекта – это не только экономия вашего времени, но и гарантия правильной работы системы.

Как работают солнечные коллекторы различных видов

Принцип работы солнечных коллекторов основан на трансформации лучистой энергии солнца в тепловую энергию. Происходит это путем нагревания циркулирующего в коллекторе теплоносителя (чаще всего воды, иногда – антифриза) и последующей передачи накопленного тепла. Иными словами, солнечный коллектор работает как своего рода водонагреватель, что и определило его сферу применения (ГВС частных домов, отопление).

Общий принцип водонагрева

Существуют различные виды гелиоколлекторов, однако в водонагревательных установках все они работают по одной схеме. Солнечные лучи нагревают теплоноситель, который по тонким трубкам поступает в заполненный водой бак. Трубки с теплоносителем проходят через весь внутренний объем бака и нагревают находящуюся в нем воду. В дальнейшем эта вода расходуется на бытовые нужды (отопление, ГВС и т.д.). Температура воды в баке контролируется специальными датчиками, при ее охлаждении ниже заданного минимума автоматически включается резервный подогрев (обычно – газовый или электрокотел).

Такова общая схема работы всех солнечных водонагревательных установок. Что же касается работы плоских и вакуумных коллекторов, то, несмотря на единый принцип действия (нагрев теплоносителя от солнца и последующую отдачу тепла), в их работе много различий.

Плоские коллекторы

Плоский солнечный коллектор нагревает теплоноситель при помощи пластинчатого абсорбера. Устроен он довольно просто. По сути, это пластина теплоемкого металла, выкрашенная сверху в черный цвет специальной краской. К нижней поверхности пластины плотно прилегает (приваривается) змеевидная трубка, по которой и циркулирует жидкость.

Черная селективная краска обеспечивает максимальное поглощение солнечных лучей, причем их отражение практически равно нулю. Поглощенные лучи прогревают теплоноситель под абсорбером, он, в свою очередь, подается далее в систему. Для минимизации теплопотерь применяются теплоизоляция абсорбера от корпуса коллектора и закаленное стекло, почти не содержащее окислов железа. Оно устанавливается над абсорбером и выполняет функцию верхней крышки корпуса. Кроме того, использование подобного стекла позволяет создать своеобразный «эффект парника», что еще больше увеличивает прогрев абсорбера, а значит, и температуру теплоносителя.

Вакуумные коллекторы

Принцип работы вакуумных коллекторов иной. Объясняется это прежде всего разницей в конструкции. Главным рабочим элементом в вакуумных моделях является не пластина абсорбера, а система вакуумированных трубок и теплосборник. Причем вариантов конструкций таких трубок несколько.

Тем не менее, несмотря на конструктивные различия, общая схема действия таких трубок фактически одинакова. Стеклянная поверхность поглощает максимум солнечных лучей благодаря специальному высокоселективному покрытию. Энергия солнца нагревает внутренний теплоноситель, а вакуумная прослойка ликвидирует теплопотери, так как вакуум – лучший изолятор. Через теплосборник аккумулированное тепло поступает далее в систему и используется для нагрева воды в баке-накопителе.

В целом коллектор этого типа обеспечивает более высокую производительность по сравнению с плоским аналогом.

Вакуумные трубки

Устройство классической вакуумированной трубки довольно просто. Она представляет собой двухстенную стеклянную колбу, между стенками которой создан вакуум. Внутри расположен медный сердечник (тепловой канал). Такая трубка называется «коаксиальной». Еще один вид – так называемые «перьевые трубки», одностенные колбы с вакуумом в самом тепловом канале.

Принцип работы вакуумной трубки зависит от особенностей строения ее теплового канала и от типа самой колбы. Каналы же, как и колбы, бывают двух видов, прямоточные и типа heat pipe.

Действие прямоточных каналов основано на непосредственном протекании теплоносителя через U-образную медную трубку. Охлажденная жидкость попадает в трубку из теплосборника, проходит через нее, нагревается и возвращается в теплосборник. Там она отдает накопленное тепло основному теплоносителю и возвращается в трубку.

Читайте также:  Биоэнергетическая установка для производства биогаза

Трубка heat pipe работает несколько иначе. Принцип ее работы основан на переносе тепла посредством легко испаряющейся жидкости, заключенной в тепловом канале. Сам канал (трубка) выполняется из теплоемкого металла (алюминий, медь). Солнечный свет нагревает жидкость, она испаряется из нижнего конца трубки и конденсируется в теплосборнике. Конденсат стекает вниз, где его вновь разогревает солнечный свет. Основной теплоноситель забирает тепло из теплосборника и передает его через коллектор дальше в систему.

Теплосборник

Помимо трубок, вакуумный солнечный коллектор оснащен теплосборником, которые необходим для передачи тепла от трубок к теплоносителю. Размещается теплосборник в верхней части агрегата. Принцип его работы следующий. Медный сердечник передает накопленную энергию основному теплоносителю, циркулирующему в замкнутом круге «теплообменник бака – коллектор». Циркуляцию обеспечивает специальный небольшой насос. Причем если температура теплоносителя упадет ниже определенного минимума (например, ночью), то управляющая автоматика водонагревательной системы отключит насос. Таким образом предотвращается обратный прогрев, при котором теплоноситель будет забирать тепло горячей воды в накопительном баке.

Воздушные коллекторы

Солнечный коллектор воздушного типа гораздо менее распространен. Применяется он не для подогрева воды, а для нагрева и кондиционирования воздуха. Роль теплоносителя в нем играет собственно воздух, нагреваемый солнечными лучами. По сути, данный коллектор представляет собой ребристую металлическую панель, выкрашенную в черный цвет. Принцип работы его основан на естественной или принудительной подаче в помещения воздуха, который прогревается под панелью под действием солнечных лучей.

Принцип работы вакуумного солнечного коллектора с трубками — описываем подробно

Опубликовано Артём в 12.02.2019 12.02.2019

Солнечный коллектор – техническое устройство для поглощения тепловой энергии солнца в видимом и инфракрасном диапазонах с дальнейшей передачей полученной энергии теплоносителю. Используется в системах отопления и горячего водоснабжения зданий. По конструкции бывают: плоские и вакуумные.

Процесс нагревания воды от солнца

Для того, чтоб солнечное светило могло осуществить нагрев воды, должны быть осуществлены некоторые предпосылки. На протяжении всего года расход остается практически на одном и том же уровне. Именно по этой причине в роли энергетического источника для нагрева жидкости эффективнее всего использовать энергию большого светила – Солнца.

Если правильно осуществить установку солнечных коллекторов, то они способны увеличить температуру воды на 50- 65% в холодное время и до 100% в летнее.

Такие условия работы системы свидетельствуют о том, что в теплое время года можно будет отказаться от использования традиционных систем обогревания при помощи газа или электричества. Использование такой системы в летнее время является крайне выгодным еще и по той причине, что выработанной энергии хватает даже на питание некоторых бытовых электрических машин, работающих на благо домашнего хозяйства.

Важным достоинством современных солнечных водонагревательных установок является простота технологического новшества, использование которого дает возможность жить комфортно, экономно, без нанесения вреда для окружающей среды.

Конструкция и принцип работы вакуумного солнечного коллектора

Предназначение плоского вакуумного солнечного коллектора заключается в обеспечении аккумулирования солнечной энергии при любых погодных условиях и температуре окружающей среды.

Как работает коллектор?

  • Одним из важнейших элементов конструкции является автоматизированный резервуар-теплообменник, способный преобразовывать, поддерживать и сохранять тепло, полученное при накоплении солнечной энергии, а также и от дополнительных источников энергии, которые используются для подстраховки работоспособности системы отопления в целом.
  • Вода, нагретая до определенной температуры, из теплообменника, расположенного во внутреннем блоке, подается в радиаторы, использующиеся для системы отопления, при этом вода, находящаяся в резервуаре, поступает в бак для поддержания ГВС.
  • Для контроля значений рабочей температуры блоков и выбора требуемого режима работы системы установлен блок управления. Он отвечает за поток энергии теплового носителя через теплообменник и определяет куда именно стоит направить тепло: на водоснабжение либо отопление.
  • В ночное время суток автоматика поддерживает минимальные параметры работы системы и поддерживает значения установленной температуры.
  • Основное преимущество использования вакуумных солнечных коллекторов для отопления дома — это их малая инерционность. При этом их использование позволяет обеспечивать горячее водоснабжение в течение года и отопление в холодный период, позволяющее экономить традиционно использующиеся источники получения тепловой энергии.

Схема и конструкция солнечного коллектора

вакуумный солнечный коллектор — схема и принцип работы

Основные блоки вакуумного коллектора: непосредственно вакуумный коллектор, резервуар-теплообменник и системный контроллер солнечных систем нагрева воды. Конструктивно вакуумный коллектор выполнен в виде трубчатых профилей, соединенных параллельными рядами. Как правило используются трубы конструкции ”стекло-стекло”, произведенные из боросиликатного стекла. Для покрытия внутренней трубы используется селективный слой, предназначенный для абсорбции солнечной энергии и устранения тепловых потерь. Функциональность таких труб позволяет их использовать при пасмурной погоде. При отрицательных температурах происходит преобразование в тепло как прямых, так и рассеянных солнечных лучей. Также для образования тепла используется природное ИК-излучение. Конструкция вакуумной трубы реализована по принципу термоса: она изготовлена из двух трубок различного диаметра, между которыми поддерживается вакуум. Вакуум обладает фактически нулевой теплопроводностью и обеспечивает высокий уровень термоизоляции.

  • Вакуумные трубы во всесезонных системах имеют дополнительные термотрубки или тепловые трубки. Они представляются собой медные трубки, наполненные жидкостью с низкой температурой кипения. При непосредственном воздействием тепла происходит испарение жидкости. При этом забирается тепло самой трубки. Далее пар поднимается в расположенный выше наконечник, где происходит его конденсация и передача тепла тепловому носителю в основном контуре либо специальной жидкости, находящейся в отопительном контуре. Далее конденсат по стенкам стекает вниз и процесс возобновляется.

как работает солнечный коллектор

  • Приемник коллектора как правило изготавливается из меди. При этом чаще всего применяется дополнительная полиуретановая изоляция. Приемник закрыт истом нержавеющего покрытия для дополнительной защиты. Передача тепла осуществляется посредством медной «гильзы» приемника. Отопительный контур отделяется от блока трубок, что позволяет поддерживать работу системы при поломке одной или нескольких трубок. Замена поврежденных трубок производится без слива используемой жидкости из рабочего контура.
  • Резервуар-теплообменник выполняет функции бойлера и используется для аккумулирования и сохранения тепла. Резервуар, как правило, имеет внутри конструкции одну либо две спирали для теплообмена.
  • Типичная конструкция системы как правило включает насос, манометр и клапан давления, кран для регулирования количества воды, различные соединительные механизмы и вентили, в том числе набор, обеспечивающий безопасное подсоединение резервуара к отопительной системе, вентиль безопасности давления в 6 атм. Бак дополнительно может быть оснащен электрическим нагревателем мощностью 1-3 кВт.
  • Если требуется обеспечить единовременную подачу горячего водоснабжения и отопления, происходит распределение аккумулированной солнечной энергии. Когда заданное значение температуры достигается, подача тепла автоматически переводится на контур отопления. Настройки перераспределения тепла могут быть изменены в зависимости от времени года либо климатической зоны. К данной системе отопления могут быть подсоединены дополнительные отопительные приборы.
  • Контроллер водонагревательных систем используется для задания значений температуры в резервуаре теплообменника и коллекторе, а также определения требуемого режима работы вакуумного солнечного коллектора согласно полученным данным.
  • Основные функции контроллера заключаются в следующем: индикация температуры в основных блоках: коллекторе, резервуаре, индикация значения температуры в обратном потоке теплоносителя, задание температуры запуска, при которой используется принудительная циркуляция в теплоносителе, таймер пуска и остановки всей системы отопления, определение температуры и продолжительности работы функции дополнительного подогрева, задание минимального значения температуры, индикация датчиков, имеющих повреждения.

Конструктивные отличия

Главным конструктивным отличием вакуумных коллекторов являются стеклянные трубки, которые надежно закреплены на базовой панели. Такие трубки покрыты специальным веществом, которое способно притягивать солнечное тепло. Помимо этого, внутри такой трубки находится еще одна, меньшим диаметром.

Следует отметить, что между ними находится вакуум. Именно благодаря этой вакуумной прослойке удается сохранить большую часть тепла и повысить эффективность коллектора более чем на 30%, по сравнению с плоскими моделями. В таких коллекторах вода способна нагреться до 300 °C.

Следующим не менее важным отличием вакуумных коллекторов является специальная жидкость внизу трубки, которая в результате нагревания превращается в пар, поднимаясь вверх, производит равномерное нагревание жидкости.

Отметим, что именно в регионах с небольшой продолжительностью светового дня и минусовой температурой реализация такой работы аппарата дает существенный выигрыш в количестве добытой тепловой энергии.

Относительно цены такие приборы имеют более высокую стоимость, нежели иные, однако, выходные характеристики оправдываются по истечении нескольких лет.

Как сделать своими руками

Изготовить вакуумный коллектор своими руками возможно, но только в том случае, если воспользоваться вакуумными трубками и блоком концентратором заводского производства. Обусловлено это тем, что в кустарных условиях невозможно создать вакуум внутри основного элемента – трубок, а при попадании воздуха снизится теплопроводность устройства и как следствие КПД создаваемого агрегата.

Для изготовления коллектора понадобятся:

  1. Вакуумные трубки – количество определяет конструирующий мастер. Используются трубки промышленного производства;
  2. Блок концентратор – в зависимости от количества трубок выбирается тот либо иной размер устройства. Используется агрегат промышленного производства.
  3. Материалы для изготовления рамы.

Изготавливается рама коллектора, для этого можно использовать пиломатериалы или профильные элементы из металла. На раме крепится концентратор и вакуумные трубки в следующей последовательности:

  • На медный стержень надеваются теплопроводные пластины и заглушки;
  • Устанавливается стержень в вакуумную колбу;
  • Одеваются фиксирующие чашки;
  • Одевается защитный пыльник;
  • Стержень помещается в блок-концентратор;
  • Процесс повторяется со следующей трубкой.

После сборки солнечный коллектор монтируется на подготовленной плоскости, при этом необходимо учесть следующие условия, как то:

  • При монтаже коллектор следует ориентировать на юг;
  • Создать условия для недопущения затенения коллектора;
  • Создать защиту от перегрева;
  • Надежно закрепить коллектор на подготовленной поверхности.

Достоинства вакуумных коллекторов

Для осуществления работы системы используются вакуумные изолированные приспособления. Главным достоинством таких тепловых соединений является постоянная работоспособность и при пониженных температурах (до — 40 °C) и усиленном давлении водопроводных каналов. Сам прибор с накопительным баком устанавливаются по отдельности, которые соединяются при помощи специальных металлопрокатных изделий.

Для получения максимального количества солнечной энергии стандартный вакуумный коллектор устанавливают на крыше дома, а накопительную емкость внутри помещения. Такие установки получили название всесезонных сплит-систем.

Работоспособность косвенных устройств автоматизирована при использовании контроллеров, а бесперебойная циркуляция носителя тепловой энергии в системе осуществляет насос.

Главными достоинствами коллекторов солнечного тепла являются:

  1. Высокая эффективность процесса даже в условиях минусовой температуры.
  2. Легкость установки всей конструкции.
  3. Противоветровая устойчивость коллектора.
  4. Продолжительность работы.

К недостаткам использования работы такой системы необходимо отнести высокую стоимость оборудования, окупаемого по истечении нескольких лет.

Средние цены

Как уже писалось выше, вакуумные солнечные коллекторы производят в нашей стране и многих странах мира. Для того чтобы понять порядок цифр, из которых складывается ситуация на рынке этих аппаратов, изучим сколько стоят вакуумные коллекторы, которые рассматривались выше, это:

  • Стоимость солнечного коллектора «Сокол-Эффект» выпускаемого ВПК «НПО Машиностроения», по состоянию на года составляет — 21900,00 рублей.
  • Стоимость коллекторов компании «АльтЭнергия» составляет для:
  1. Серии R1 «SunRain» от 24000,00 до 60000,00 рублей в зависимости от конструкции.
  2. Серии U от 18000,00 до 35000,00 рублей в зависимости от конструкции.
  • Стоимость вакуумных коллекторов компании ПК «АНДИ Групп» составляет:
  1. Серия «УНИВЕРСАЛ», от – 47700,00 до 89700,00 рублей в зависимости от модели;
  2. Серия «ДАЧА» от 17500,00 до 36000,00 рублей в зависимости от модели;
  3. Серия «ДАЧА ЛЮКС» от 24500,00 до 37500,00 рублей в зависимости от модели;
  4. Серия SCH от 25400,00 до 61700,00 рублей в зависимости от модели.
  • Стоимость коллекторов компании «GREENoneTEC» составляет:
  1. Модель FK 8200N 4H VS7E – 454 евро;
  2. FK 8200N 4H VS7E – 420 евро.
  • Стоимость коллекторов компании «Guangdong Fivestar Solar Energy Co., Ltd» составляет:
  1. Серия AL-HP — от 440 до 880 долларов.

Распространенность солнечных коллекторов

На сегодняшний день ситуация распространения солнечных коллекторов претерпела небольших изменений. Ввиду изменения климата в некоторых областях использование солнечных коллекторов приобрело больше популярности.

Солнечные коллекторы с успехом используют как для реализации бытовых нужд, так и для обогрева жилых помещений, на предприятиях различных масштабов, на овощных плантациях. Такой способ получения энергии стал достаточно популярен в Европейских государствах, для которых экономия средств стоит на первом месте: США, Китай, Германия и так далее.

Для всего мира массовый переход на солнечную энергию означает прорыв в современных технологиях, которые обеспечивают большие возможности обеспечения населения планеты бесплатным электричеством, не оказывающим пагубное воздействие на атмосферу.

Использование такого рода коллекторов является прекрасной альтернативой электрического и газового отопления, так как является экологически чистым устройством, не осуществляющим выбросы в атмосферу. Помимо этого наибольшим достоинством использования такого рода устройств является экономическая выгода.

Плюсы и минусы вакуумных коллекторов

К положительным аспектам использования можно отнести следующие:

  • Возможность создания полностью автономной системы теплоснабжения.
  • Неисчерпаемый, возобновляемый источник энергии, каким является солнце.
  • Надежность устройств.
  • Ремонтопригодность устройств.
  • Экологическая безопасность устройств.

К недостаткам вакуумных коллекторов относятся:

  • Высокая стоимость устройств.
  • Влияние погодных условий на производительность аппаратов.
  • Невозможность повсеместного использования, определяющаяся регионом проживания потенциальных потребителей.

Кол-во блоков: 10 | Общее кол-во символов: 13852
Количество использованных доноров: 3
Информация по каждому донору:

Ссылка на основную публикацию