Усиление и реконструкция фундаментов

Технологии усиления и ремонта фундаментов

На данный момент еще не придуманы настолько совершенные технологии возведения фундаментов, которые гарантировали бы его расчетный срок эксплуатации.

Учитывая, что с каждым днем экология становится все хуже, то даже прочные металлы и бетоны неизбежно разрушаются и этот процесс нужно или приостановить, или хоть замедлить на некоторое время. Понятно, что причин деформации фундаментов бывает множество, но стоит отметить ключевых из них:

  • Человеческий фактор. К этим факторам можно отнести ошибки в расчетах допустимых нагрузок на фундамент, неправильно подобранные технологии с учетом типа почвы, а также ошибочный выбор и монтаж строительных материалов;
  • Климатический фактор: разрушение материала фундамента за счет воздействия агрессивных грунтовых вод, кислотных и щелочных дождей;
  • Техногенный фактор. Это строительство поблизости от здания автомобильных и железнодорожных магистралей с интенсивным движением и отсутствием средств защиты от воздействия вибрации.

Фактически, ремонт и усиление любого фундамента нужно начинать делать, если:

  • Обнаружена просадка, деформация или разрушение несущей кладки, снижение его гидроизоляционных свойств или возникновение просадки только одного угла здания;
  • Обнаружено снижение устойчивости фундаментов и грунтов;
  • Увеличивается скорость деформации и разрушения грунтов под воздействием различных факторов;
  • Возникло непредвиденное и неконтролируемое перемещение элементов несущих конструкций независимо от арматурного пояса.

Основные причины деформации фундаментов, при которых реконструкция неизбежна:

  • Возникшее неравномерное уплотнение слабых грунтов, возникшее из-за изменения гидрологического режима территории или возникшей неравномерной нагрузки самих почв на подошву;
  • Нарушение структуры грунтов впоследствии неправильного осушения болотистых территорий или проведения глубинных бурильных работ;
  • Динамическое воздействие примышленных предприятий, транспортных магистралей, промышленного сейсмического влияния;
  • Понижение уровня грунтовых вод;
  • Локальное повреждение подземной части основания грунтовыми водами с агрессивными составляющими, а также нарушение внешней гидроизоляции цоколя;
  • Нарушение правил застройки поселений, когда по соседству со старыми зданиями возводятся новые с нарушениями технологического процесса;
  • Непредусмотренное типов и характеристиками основания дополнительное возведение подземных этажей и мансардных уровней. В результате на фундамент ложится более высокая нагрузка, чем расчетная;
  • Промерзание почвы выше расчетного уровня.

Понятно, что причин для деформации и повреждения основания существует множество. Но, прежде чем приступать к реставрации основания, нужно точно определиться с причиной и сначала ее устранить. А уже потом заниматься непосредственно ремонтом и усилением поврежденного фундамента, причем часто оба технологических процесса делают одновременно. Но, перед началом работ по усилению фундаментов, нужно провести тщательный, правильный и многогранный расчет технологии ремонта, чтобы затем повторно не проводить одни и те же работы.

Технологии проектирования ремонта фундаментов

Учитывая, что необходимость в усилении фундаментов возникает в следующих случаях:

  • При обнаружении опасных деформаций грунтов и искусственном или естественном износе материала оснований. В таких случаях сначала делается усиление грунта, устранение подвижек и фиксирование пластов, а уже потом нужно приступать к ремонту основания. Как правило, эта проблема особенно часто возникает в зданий старой постройки, памяток архитектуры. И проводить проектирование усиления нужно с учетом особенностей такого здания, чтобы не допустить в процессе реставрации дальнейшего разрушения несущих элементов.
  • Когда проведено необдуманное вмешательство в конструкцию возведенного дома, особенно при строительстве подвалов и мансардных этажей;
  • При строительстве на соседних участках.

Особенность фундаментов старых домов в том, что нет чертежей, а возведение проводилось самим подрядчиком. Поэтому, реставрация таких оснований довольно сложная и проектирование усиления всегда начинается из работ по обследованию наземных и цокольных конструкций, а затем способом откопки шурфов.

Что такое шурфирование оснований? Это получение подробной информации о фундаменте путем откопки шурфов с одной или (чаще) нескольких сторон от подошвы основания. В некоторых случаях такие шурфы могут иметь глубину до 4-5 метров, что часто практиковалось древними архитекторами при возведении массивных зданий с натурального камня.

После получения всех данных шурфования выполняются подробные чертежи, подбирается оптимальный тип строительных материалов, и отбираются образцы почвы.

Можно также получить подробную информацию о фундаменте способом бурения скважин и отбора образцов. Такой способ позволяет обнаружить и обследовать скрытые конструкции в фундаменте, например, деревянные сваи, ростверки, а также их конструкционные особенности.

Усиление фундамента лучше сразу совмещать с капитальным ремонтом здания, ведь тогда можно одновременно обработать все несущие стены и перекрытия, подобрать иной строительный материал и под его параметры выбрать способ усиления фундамента.

Строительная практика часто показывает, что при ремонте фундамента заселенного дома приходится использовать специальные пневматические домкраты и устранение пустот в несущих слоях с максимальной безопасностью для окружающих.

Как рассчитать усиление фундамента

Провести расчет качественного усиления иногда не так просто, ведь тут учитывается не только выбор технологии, но и результаты проведенных изысканий. Поэтому, главным этапом всегда становится сбор нагрузок, которые передаются на подошву основания со стороны почвы, самого здания и внешних факторов.

Классические методы ремонта и усиления фундаментов

Как правило, все они сводятся к увеличению полезной площади подошвы основания, благодаря чему снижается давление на почву. В таких случаях практикуется несколько методов:

  • Бурение скважин ниже глубины промерзания почвы, но не ниже нижней кромки несущей подошвы основания. Затем под него закачивается под давлением бетон, который заполняет поры грунта и подошвы, равномерно растекается по всей поверхности и там застывает.
  • Также можно провести углубление подошвы основания и заменить поврежденные и разрушенные деревянные, металлические конструкции на современные минеральные соединения. Такая технология считается оптимальной, когда будет строиться подвал или увеличивается его глубина. В таких случаях рекомендуется расширение проводить с помощью бетонных плит или натурального камня. Полученная подошва будет иметь трапециевидную форму, поэтому существенно усилит новый фундамент.
  • Установка монолитных плит под подошву. Такая технология дорогая, оправдывает себя в случае ремонта основания, поврежденного впоследствии влияния подвижек почвы от метрополитена, железнодорожных линий и промышленных комплексов. Плиты производятся из железобетона, устанавливаются в специально предусмотренные штробы на уровне нижней кромки подвального помещения. Плитные конструкции в таком случае принимают на себя нагрузку равномерно из существующим фундаментом.
  • Кирпичная или бетонная кладка в стороне от основного фундамента с целью смещения центра тяжести от поврежденного фрагмента. Практикуется в случаях наличия дома небольшой массы и если на строительной площадке есть возможность проводить земляные работы. В таких случаях по внешней стороне от поврежденного участка выкапывается траншея на глубину подошвы, устанавливается деревянная опалубка. Внутри опалубки предусматривается песчано-гравийная подушка, тщательно трамбуется и устанавливается арматурный пояс. Заполняется опалубка жидким бетоном, кирпичом или натуральным камнем, дополнительно покрывается гидроизоляционным слоем. Часто практикуется при реставрации старых оснований в сельской местности, когда нет смысла демонтировать старое здание и возводить новое.

Традиционные технологии себя оправдывают, когда ремонт или реставрация фундамента проводится на сухих и прочных почвах. Они не подходят для усиления оснований на влагонасыщенных почвах, ведь тогда приходится новые конструкции монтировать выше уровня подошвы и залегания грунтовых вод и такое усиление часто становится не эффективным.

В процессе реконструкции здания существенно увеличиваются нагрузки на основание, поэтому и нужно проводить реконструкцию и усиление одновременно. В таких случаях практикуют использование бетонных или железобетонных обойм.

Процесс усиление старого фундамента

Технология простая, но трудоемкая:

  1. Проводится расчет типа обойм, их размера и материала наполнения.
  2. Затем в четко указанных местах непосредственно в фундаменте бурятся скважины (шпуры).
  3. В готовые отверстия устанавливают арматуру, обвязывают ее с арматурой старого основания с целью увеличить полезную площадь перекрытия подошвы.
  4. Также в шпуры монтируют поясную вертикальную арматуру, которая защищает конструкцию от смещения.
  5. Готовые элементы заливают бетоном под давлением.

Если обойма делается в фундаменте с бутового камня, тогда сначала нужно вырыть траншею и отверстия делать аккуратно перфоратором или ударной дрелью. В отверстия устанавливают стяжки, затем конструкция заливается бетоном. За счет неровной поверхности кладки, сцепление бетона и бутового камня будет максимальным.

Технология подведения свай

Такая технология предусматривает ремонт фундамента за счет переноса части или всей массы здания на новый фундамент, возведенный под основной подушкой. Фактически, это пересадка старого основания на новые железобетонные сваи, а грунт закрепляется с помощью инъекции строительного раствора.

Но такая технология себя оправдывает, если под основанием обнаружен прочный слой почвы на относительно небольшой глубине. В иных случаях нужно использовать другие методы усиления фундамента здания.

Тут также нужно помнить, что сваи для усиления конструкций отличаются от обычных свай, на которых возводятся дома. Тут используются специальные буронабивные и инъекционные сваи, а также сваи вдавливания.

Особенность технологии в том, что нужно использовать малогабаритную технику, а если есть доступ до строительной площадки, то и вид ремонта можно подобрать.

Как использовать буронабивные сваи

Как правило, в условиях заселенного города часто ограничен доступ до строительной площадки. Поэтому, если есть достаточно места для подвода тяжелой техники, тогда стоит использовать буронабивные сваи, ведь они устанавливаются на расстоянии не менее 2.5 метра от стены.

Но при установке свай часто возникает сильная вибрация грунта, а это может привести к дальнейшему разрушению основания. Также стоит помнить, что поперечные балки громоздкие и требуют расхода большого количества металла.

Технология установки свай:

  1. Сначала проводится подготовка строительной площадки, она тщательно выравнивается.
  2. Затем монтируются и открываются шурфы, в которые подводят и вдавливают металлические трубы, которые между собой сваривают арматурой.
  3. Трубы заливают бетоном.

Преимущество технологии очевидно, ведь можно трубы установить на глубину до 25 метров, а на месте определяется их несущая способность, а реконструкция основания будет проведена за считанные недели.

Использование инъекционного усиления

Ключевое отличие инъекционной технологии от буронабивной – это использование бетона, подаваемого под большим давлением. Когда бетон попадает на нижнюю часть сваи, он выдавливает грунт и заполняет полученную полость. В результате происходит надежное уплотнение грунта под основанием с одновременным формированием новой подушки.

Вариантов бурения существует большое количество, тип и способ подбирается исходя от ситуации на строительной площадке, а также типа фундамента. Все сваи имеют наклонную конструкцию, пробивают фундамент и углубляются до уровня прочного грунта. Также допускается бурение с двух сторон с небольшим интервалом.

Инъекционное закрепление оправдано при ремонте зданий, возведенных на песчаных грунтах. Ведь в таких случаях происходит локальное насыщение грунта строительными растворами, которые улучшают механические характеристики почвы.

32. Реконструкция и усиление фундаментов. Особенности строительных работ в условиях реконструкции. Причины, вызывающие необходимость реконструкции фундаментов и усиление оснований.

Несмотря на все увеличивающийся объем реконструкции зданий и сооружений самого различного назначения, до сегодняшнего дня нет нормативных документов, определяющих порядок расчета оснований и фундаментов в различных вариантах реконструкции. К наиболее распространенным случаям реконструкции можно отнести:

увеличение нагрузки на существующие фундаменты (надстройки, использование более тяжелых конструкций и пр.);

устройство новых фундаментов на пятне застройки старого, разбираемого при реконструкции;

пристройку новых зданий и сооружений к старым, существующим;

усиление либо переустройство оснований и фундаментов.

Несущая способность должна был достаточной, чтобы не про. исходила потеря устойчивости основания, а неравномерности осадки оснований не должны превышать предельно допустимых величин для нормальной эксплуатации здания после реконструкции Проектирование производится по двум предельным состояниям.

Целью расчета по первому предельному состоянию является обеспечение несущей способности и ограничение развития чрезмерных пластических деформаций в период дальнейшей эксплуатации здания после реконструкции.

Этот расчет производится исходя из общего условия

Для пылевато-глинистых грунтов с мягко- и текучепластичной консистенцией, ленточных суглинков и глин, пылевато-глинистых грунтов, содержащих растительных остатков до 10% от веса минеральной части, а также при реконструкции сооружений со сроком эксплуатации менее 15 лет необходимо провести проверку оснований по несущей способности (по первому предельному состоянию).

Прогноз дополнительных осадок оснований реконструируемых зданий рекомендуется осуществлять специальным расчетом в 2 этана: первый этап – расчет исходной осадки (до реконструкции) с учетом напряженно-деформированного состояния (НДС) основания; второй этап – определение дополнительной осадки фундамента после реконструкции.

Способы усиления оснований и фундаментов.

В процессе длительной эксплуатации зданий и сооружений происходят деформации конструкций, вызываемые различными причинами. При строительстве зданий на слабых грунтах основными причинами деформаций являются неравномерные осадки.

Последние вызывают разрушения самих фундаментов, стен, колонн, перекрытий.

Выбор технологии усиления оснований и фундаментов зависит от рассмотренных факторов, а также от вида предполагаемых работ по консервации, реставрации либо реконструкции. Реконструкция может быть связана с увеличением нагрузок на существующие фундаменты. Основополагающими являются факторы, связанные с конструктивными особенностями здания, состоянием грунта в основании и оснащенностью организаций, осуществляющих работы. Современным оборудованием можно выполнять работы по усилению оснований и фундаментов технологично, быстро, надежно, с минимальным использованием ручных операций.

Принятое решение должно обеспечить надежную, длительную дальнейшую эксплуатацию, соответствующую данному при проектировании геотехническому прогнозу, с учетом экономики, экологии, безопасности ведения работ.

Рассмотрим и проанализируем традиционные и современные новые технологии усиления оснований и фундаментов. Предварительно оценим причины, обусловливающие необходимость усиления оснований и фундаментов. Согласно обобщенной классификации Б.И.Далматова это, прежде всего, увеличение нагрузки на фундаменты; разрушение кладки фундамента или снижение его гидроизолирующих свойств; ухудшение условий устойчивости фундаментов либо грунтов в их основании; увеличение деформативности грунтов; непрерывное развитие недопустимых перемещений конструкций.

В литературе рассматриваются, как правило, традиционные способы усиления. Однако в последние 20 лет развиваются новые технологии, особенно интенсивно в ФРГ, Англии, Франции, Италии, Швеции, Финляндии.

Традиционные способы усиления фундаментов.

Рассмотрим традиционные варианты усиления фундаментов, связанные с увеличением площади подошвы, с позиций геотехники и технологичности применительно к слабым, водонасыщенным грунтам, где такие уширения наиболее вероятны. Выполняемые уширения подошвы фундамента без предвари-тельной опрессовки малоэффективны. Они вступают в работу лишь при увеличении нагрузки, когда появляются дополнительные осадки. К сожалению, последние могут быть предельными для старого здания, требующего усиления. Это наглядно видно на схеме уширения подошвы фундамента с эпюрами давления в плоскости подошвы (рис. 15.4).

Усиление фундаментов

В ходе эксплуатации зданий нередко возникает необходимость усиления старых фундаментов, потерявших значительную часть несущей способности, а также при реконструкции зданий, когда проектная нагрузка на фундамент увеличивается.

  • Усиление фундамента существующего дома
  • Способы усиления ленточных фундаментов
  • Усиление свайных фундаментов
  • Способы усиления железобетонных фундаментов
  • Усиление фундаментов посредством обустройства железобетонной обоймы
  • Усиление фундамента железобетонной рубашкой
  • Усиление фундамента посредством увеличения площади опирания на грунт
  • Усиление фундамента увеличением глубины его заложения
  • Усиление фундамента второй сваей
  • Усиление посредством подводки опорных элементов под подошву основания
  • Усиление железобетонного фундамента опускным колодцем
  • Усиление фундамента переустройством его конструкции
  • Усиление грунтов основания

Усиление фундамента существующего дома

Среди причин, приводящих к необходимости усиления оснований и реконструкции фундаментов, основными являются:

периодические колебания уровня грунтовых вод;

износ фундаментов старых построек под воздействием промораживания, перепадов температур, производства земляных работ вблизи фундаментов, пучения грунтов, превышения проектных нагрузок в ходе эксплуатации, вибрационного воздействия оборудования т. п.;

деформации вследствие ошибок при проектировании и строительстве;

суффозия (вымывание более мелких частиц грунта в процессе фильтрации через него паводковых вод.

Рис. 1: Усиление фундамента существующего дома

Существующие технологии усиления фундаментов зданий различны и позволяют восстановить или существенно повысить показатели по несущей способности фундамента любого здания. Существенной разницы между усилением фундамента частного дома и многоэтажного административного, производственного или жилого здания нет, а вот от типа усиливаемого фундамента и характеристик грунтов методы усиления фундаментов зависят.

Способы усиления ленточных фундаментов

Перечислим основные способы усиления ленточных фундаментов, применяемые сегодня на практике строителями:

Усиление фундаментов торкретированием. Вдоль фундамента участками (захватками) отрывается траншея, поверхность фундамента тщательно очищается, на ней делаются насечки, глубиной не менее 15 мм, а затем наносится бетон с применением бетонной пушки.

Укрепление фундаментов цементацией. Без проведения земляных работ специальными механизмами через каждые 0, 5–1 м по периметру (или только на определенном проблемном участке) бурят шурфы в грунте и фундаменте, и с помощью специальных инъекторов под большим давлением подают раствор бетона; он заполняет пустоты и трещины фундамента и частично пространство между фундаментом и грунтом.

Усиление фундаментов железобетонными обоймами. Фундамент открывается участками, очищается, грунт основания уплотняется домкратами, монтируется каркас арматуры и заливается бетоном.

Усиление фундамента буронабивными сваями. Производится вертикальное бурение скважин сквозь опорную плитную часть фундамента, закладывается и перевязывается арматура сваи с арматурой фундамента, заливается и трамбуется бетон.

Читайте также:  Битумная мастика для гидроизоляции фундамента

Усиление фундамента сваями. Пол основание фундамента домкратом вдавливаются составные железобетонные сваи.

Усиление фундаментов буроинъекционными сваями. Фундамент пробуривается в нескольких местах насквозь скважинами небольшого диаметра под углом к вертикали и не проектную глубину. Закладывается арматура и под давлением закачивается бетон.

Есть и другие способы, которые скорее можно назвать разновидностью перечисленных выше.

Усиление фундаментов путём усиления подошвы

Усиление свайных фундаментов

Свайные фундаменты также можно усилить, в случае необходимости., и для этого существуют следующие способы:

усиление свай железобетонной обоймой, стенки которой должны быть не менее 100 мм толщиной, а углубление в грунт — не менее 1 м;

усиление свай «бетонной рубашкой», путем нагнетания раствора в заранее пробуренные по периметру сваи скважины;

усиление сваи второй сваей (забивной или буронабивной), вплотную с первой;

усиление ростверка торкретированием;

усиление ростверка нагнетанием раствора в предварительно устроенные в нем шпуры;

усиление фундамента дополнительными бурение скважин.

Часто усиление свайных и ленточных фундаментов сочетается с усилением грунтов основания.

Способы усиления железобетонных фундаментов

Железобетонные фундаменты могут быть монолитными (сделанные посредством заливки бетоном опалубки с арматурным каркасом) либо сборными (возведенными из блочных железобетонных конструкций).

В строительной практике применяются следующие способы усиления железобетонных оснований:

Усиление фундаментов посредством обустройства железобетонной обоймы

Совет эксперта! Выделяют два вида ЖБ обойм – с уширением опорной пяты основания, и обоймы без уширения.

  • К использованию обоймы без уширения прибегают при необходимости укрепления поврежденных железобетонных фундаментов с достаточной несущей способностью;
  • Обойму с уширением обустраивают при недостаточных несущих характеристиках основания либо при надстройке здания.

По периметру основания копается траншея, оголенный фундамент очищается от грунта и промывается цементным молоком. По всей высоте основания в шахматном порядке просверливаются отверстия, в которые забиваются арматурные прутья диаметром 15-20 мм (они должны выходить из стены как минимум на 15 сантиметров).


Рис. 1.1: Схема железобетонной обоймы

На забитых в фундамент стержнях формируется арматурный каркас, к которому приваривается листовой металл. В пустоты кладки фундамента через инъекционные трубки нагнетается бетон до полного заполнения всех существующих трещин. После отвердевания бетона в фундаменте производится заполнение бетоном металлической опалубки и обрезка верхних частей инъекционных трубок.

Усиление фундамента железобетонной рубашкой

Метод обустройства железобетонной рубашки идентичен технологии усиления обоймой, единственное отличие – охват основания.

Рис. 1.2: Схема отличий железобетонных обойм и рубашек

Совет эксперта! Обоймы представляют собою замкнутые конструкции, которые оцепляют весь периметр фундамента, тогда как рубашки используются для усиления одной из его поврежденных частей.

Усиление фундамента посредством увеличения площади опирания на грунт

Увеличение опорной площади производится с помощью наращивания толщины основания железобетонными отливами.

Рис. 1.3: Схема железобетонного отлива

После откопки фундамента в нем сверлятся сквозные отверстия, в которые проводятся стальные тяжи для фиксации ЖБ отливов. По завершению крепления отливов между ними и стеной размещаются гидравлические домкраты и осуществляется разжатие опалубки. Образовавшееся пространство заполняется бетоном, выжидается время до его схватывания и домкраты убираются. Происходит уплотнение бетона, в результате чего фундамент обжимается как самим отливом, так и бетонной прослойкой.

Усиление фундамента увеличением глубины его заложения

При необходимости переноса опорной подошвы фундамента в нижерасположенный слой грунта, под основанием дома формируются бетонные блоки.

Фундамент разгружается с помощью рандбалок и гидравлических домкратов, поднимающих стены дома. После чего вокруг фундамента участками по 2-2,5 метра откапываются шурфы глубиной на 1 метр ниже глубины заложения основания. Стенки и дно шурфов укрепляется деревянной забиркой.


Рис. 1.4: Схема углубления фундамента бетонными блоками

Под опорной пятой фундамента роется колодец, размер которого соответствует глубине увеличения основания.

Совет эксперта! Колодец бетонируется так, что бы между поверхностью бетона и нижней стенкой опорной пяты фундамента оставался зазор в 3-4 см.

После отвердевания бетона в зазоре размещаются гидравлические домкраты и производится обжатие бетона в колодце. По завершению обжатия зазор бетонируется и траншея отсыпается грунтом.

Усиление фундамента второй сваей

Усиление фундамента буронабивными сваями не требует откопки основания, что значительно сокращает сроки проведения реконструкции.

Данный метод применяется при необходимости усиления фундаментов с недостаточной несущей способностью из-за неправильно проектирования, необходимости надстройки здания либо уменьшения плотности грунтов.

Дополнительные сваи могут размещаться как вплотную к уже существующим опорам фундаментам, так и выноситься за периметр контура основания. В таком случае нагрузка на дополнительные сваи передается с помощью горизонтальных балок, которыми они объединяются с ростверком дома.

Рис. 1.5: Схема усиления фундамента дополнительными сваями

Совет эксперта! При усилении фундаментов редко используются забивные ЖБ сваи, поскольку их погружение сопровождается деструктивными динамическими нагрузками на уже существующее основание, которые могут привести к его разрушению.

Усиление посредством подводки опорных элементов под подошву основания

Данная технология позволяет усилить мелкозаглубленные фундаменты не увеличивая их глубину и ширину. В качестве подкладываемого опорного элемента используются монолитные железобетонные плиты либо столбы, с помощью которых достигается увеличение площади опоры фундамента и увеличение его несущей способности.


Рис. 1.6: Схему усиления фундамента с помощью подводки и формирования ЖБ плит

Усиление железобетонного фундамента опускным колодцем

Опускные колодцы представляют собою сборные конструкции из ЖБ плит, которыми обжимается грунт вокруг стенок фундамента. Погружение колодца выполняется в процессе последовательной выемки грунта под бетонными плитами. Образованная вокруг стенок фундамента траншея засыпается песком, который поливается водой и послойно уплотняется.


Рис. 1.7: Схема опускного колодца для усиления фундамента

Совет эксперта! Глубина заложения опускного колодца должна быть в два-три раза большей глубины заложения самого основания.

Усиление фундамента переустройством его конструкции

Нередки случаи, когда для усиления столбчатого основания из него формируют ленточный фундамент, а при необходимости усиления ленточного, из него, в свою очередь, делают плитный фундамент.
К данному методу прибегают при серьезных деформациях фундамента, когда остальные способы его усиления не способны обеспечить требуемый результат.

Усиление грунтов основания

Основным фактором, провоцирующим усадку фундаментов нередко выступает недостаточная плотность и несущие характеристики грунтов, на которых они расположены. В таком случае в комплексе с укреплением фундамента должны выполняться работы по усилению грунтов. Существует несколько способов усиления грунтов основания:

путем нагнетания специальных химических реагентов в грунт, способных изменить его структуру (смолизация и силикатизация) цементация — нагнетание в грунт цементной суспензии; обжиг — путем сжигания газа в специальных шурфах и скважинах электросиликатизация.

  • Цементизация – проводится для усиления скальной почвы, гравелистых песков и супесей с минимальным содержанием пылистых частиц;

Цементизация выполняется посредством специального инъекционного оборудования – по периметру основания в почву погружаются полые металлические трубы диаметром от 25 до 80 миллиметров, на нижней части которых с шагом в 3 см просверлены отверстия диаметром 4-5 мм.


Рис. 1.8: Схема усиления грунта цементизацией

В трубы с помощью компрессора нагнетается цементно-песчаный раствор под давлением в 7 атмосфер. Давление при подаче раствора контролируется с помощью манометров. В результате цементизации под опорной подошвой основания формируется бетонная прослойка, значительно увеличивающая несущую способность фундамента.

  • Силикатизация – используется для усиления мелкозернистой почвы: суглинка, плывунов, глины, и лессовидной почвы;

Силикатизация выполняется с помощью аналогичного инъекционного оборудования. В почву через рядом расположенные инъекторы подается два вида раствора – силикат натрия (он же жидкое стекло) и смесь хлористого кальция с водой.

Совет эксперта! При усилении лессовидного грунта применяется однорастворная силикатизация – хлористый кальций не используется, но количество нагнетаемого жидкого стекла увеличивается в три раза.

Усиление плохо проницаемых плывунов производится с помощью специальной эмульсии – силикадоля, состоящего из силиката натрия и фосфорной кислоты. Данная смесь имеет низкую вязкость и лучше проникает в поры лессового грунта.


Рис. 1.9: Схема усиления грунта силикатизацией

Силикатизация может дополнятся электрическим воздействием на раствор силиката натрия, что способствует более равномерному распределению эмульсии внутри почвы. При электросиликатизации воздействие током на раствор производится в течении 2 суток.

  • Битумизация – применяется для скальных грунтов и сухой песчаной почвы;

Для битумизации используется расплавленный битум, который через инъекторы подается в пробуренные в скальных грунтах скважины. Заполнивший пустоты битум отвердевает и препятствует размытию трещиноватой скальной почвы грунтовыми водами.


Рис. 2.0: Расплавленный битум

Усиление песчаной почвы проводится по методу холодной битумизации, для которой используется битумная эмульсия (смесь частиц битума с водой) с добавлением коагулянтов (катализаторов осадка битума). После нагнетания эмульсии в почву частицы битума заполняют поры грунта и создают уплотняющую почву водонепроницаемую завесу.

  • Смолизация – используется для усиления песчаной почвы;

Через инъекторы в песчаный грунт подается смесь соляной и карбамидной кислоты. После попадания в почву эмульсия, в результате химической реакции, образует гель, заполняющий поры и склеивающий песчаный грунт между собой.

  • Глубинное уплотнение – применяется для укрепление насыпных грунтов, сформированных для выравнивания и поднятия уровня строительных площадок;

Глубинное уплотнение производится с помощью обустройства вертикальных и наклонных буронабивных свай. Бурение ведется с помощью оборудования CFA (полым шнеком) с использованием обсадной трубы, после достижения проектной глубины скважины бур поднимается вверх и заполняет скважину бетонным раствором.


Рис. 2.1: Усиление грунтов буронабивными сваями

Совет эксперта! Чем шире диаметр формируемых свай – тем сильнее уплотняется почва.

  • Термоусиление (обжиг) – используется для укрепления глинистой почвы;

Обжиг происходит в предварительно пробуренных вертикальных и наклонных скважинах. При усилении оснований, расположенных на склонах, практикуется горизонтальное бурение скважин под фундаментом здания. По завершению бурения в нижней части скважины размещается нихромовый электронагреватель, а оголовок скважины закрывается герметичным затвором.

Электронагреватель в процессе работы (температура от 300 до 500 градусов) поднимается с дна скважины в ее верхнюю точку, в результате чего все слои грунта подвергаются термическому воздействию.

Таким образом из арсенала средств по усилению фундаментов всегда можно выбрать наиболее приемлемый способ для вашего конкретного случая.

Наши услуги

Наша компания “Богатырь” специализируется исключительно на услугах: забивка свай, лидерное бурение, забивка шпунта, а так же статических и динамических испытаниях свай. В нашем распоряжении собственный автопарк бурильно-сваебойной техники и мы готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку.

Усиление и реконструкция фундаментов.

Автор: Швец В.Б. Усиление и реконструкция фундаментов.

Выдержки из книги.

Виды разрушения фундаментов в процессе эксплуатации

Основными причинами разрушения фундаментов в процессе эксплу­атации являются: коррозия материала фундамента под воздействием агрессивной среды; нарушение режима эксплуатации технологического оборудования; динамические воздействия технологического и подъем­но-транспортного оборудования; перегрузка фундаментов и некачест­венное исполнение их.

Большую опасность для оснований фундаментов представляют поверхностные воды, отводу которых часто не уделяется должного внимания. Между тем замачивание оснований из поверхностных источников, как правило, приводит к неравномерным деформациям зданий. Особенно опасно замачивание оснований, сложен­ных структурно неустойчивыми грунтами – просадочными, набухающи­ми, засоленными, пылеватыми и песчаными.

Как показывают наблюдения, в ряде крупных промышленных го­родов страны отмечается интенсивный подъем уровня грунтовых вод. Причинами этого являются интенсивная застройка тер­риторий, нарушающая условия поверхностного стока, утечки из комму­никаций, отстойников, резервуаров, а также подтопление водами вслед­ствие строительства плотин, водохранилищ. Интенсивные вырубки леса тоже могут стать причиной подтоплений. В результате названных яв­лений во многих случаях изменяется несущая способность основания, обусловливая возникновение значительных осадок оснований и дефор­маций существующих зданий и сооружений. При этом возникает пробле­ма обеспечения нормальных условий эксплуатации зданий и сооружений на обводненных основаниях.

При строительстве сооружений непосредственно на склоне наруше­ние их устойчивости нередко происходит в виде появления недопустимых (порой катастрофических) осадок.

Общая классификация отказов фундаментов

Система основание — фундамент должна сохранять надежность в про­цессе всего периода эксплуатации здания или сооружения и способность воспринимать все внешние воздействия, предусмотренные при проекти­ровании.

Под безотказностью работы системы основание — фундамент следует понимать способность ее сохранять работоспособность в определенных условиях эксплуатации в течение времени функционирования. Безотказ­ность включает в себя требования прочности, надежности, устойчивости и долговечности как всей системы, так и ее элементов.

Полная или частичная утрата надежности системы называется отка­зом. В отдельных случаях понятие отказа является четко определенным (например, обрушение всего сооружения), однако в общем случае поня­тие отказа является весьма относительным, так как в значительной сте­пени зависит от конкретных условий функционирования системы. Отка­зом системы основание — фундамент является как полный выход систе­мы и всего сооружения из строя, так и недопустимые отклонения пара­метров системы от расчетных или от требуемых новых условий ее рабо­ты. Наряду со случайным колебанием параметров системы может наблю­даться и монотонное необратимое их изменение (износ), обусловленное старением, коррозией и т.п. Такие отказы называются постепенными.

Внезапные (катастрофические) отказы фундаментов и их оснований обычно приводят сооружение к предельному состоянию. Причинами воз­никновения внезапных отказов оснований являются: дефектность ин­женерно-геологических изысканий; несоответствие принятых расчетных схем и несовершенство методов расчета несущей способности и дефор­маций; грубые нарушения режима эксплуатации оснований, аварии и стихийные бедствия.

Постепенный (не катастрофический) отказ основания обычно обус­ловлен дефектами и погрешностями испытаний грунтов, недостаточной информацией об инженерно-геологических, природно-климатических и эксплуатационных условиях и т.д. Проявление постепенно отказа связа­но с накоплением пластических деформаций и приспособлением системы основание — фундамент и ее отдельных элементов к изменившимся ус­ловиям функционирования. Постепенный отказ характеризует достиже­ние системой или ее элементами предельного состояния по деформации.

Одной из основных характеристик надежности оснований и фундамен­тов является ее ремонтопригодность, т.е. способность системы к пре­дупреждению, обнаружению и устранению различных отказов и отклоне­ний путем проведения ремонтов. Степень ремонтопригодности фундамен­та зависит в первую очередь от его конструктивных особенностей. Как правило, ремонт фундамента возможен только при постепенном отказе, внезапные же отказы обычно приводят сооружение в предельное состоя­ние по прочности и устойчивости.

Свойство системы сохранять работоспособность и надежность при установленной системе ремонтов вплоть до состояния, при котором даль­нейшая эксплуатация становится невозможной или опасной, а ремонт и восстановление экономически нецелесообразным, называется долго­вечностью.

Долговечность материала фундамента в основном зависит от интен­сивности протекания процессов разрушения бетона под влиянием агрес­сивных сред при контакте с грунтом или технологическими растворами. Мерой долговечности является период времени до наступления предель­ного состояния сооружения (физический отказ) либо время полезного функционирования последнего (моральный отказ).

При физическом отказе, зависящем от степени естественного износа, возникает необходимость усиления системы основание — фундамент или ее дополнительной защиты от агрессивных или динамических воздействий.

При наступлении морального отказа система основание — фундамент не пригодна для дальнейшей эксплуатации вследствие невозможности, ее использования в первоначальном виде в условиях технического пере­вооружения и переоснащения производства. В этом случае требуется пере­устройство или реконструкция системы для получения новых ее качеств. Для обеспечения большей эффективности следует как можно полнее ис­пользовать элементы старой системы.

УКРЕПЛЕНИЕ И УСИЛЕНИЕ ОСНОВАНИЙ

Осушение и дренаж оснований

При эксплуатации зданий и сооружений часто возникает необходи­мость в осушении оснований или предотвращении их обводнения. Ука­занное во многом связано с прогрессирующим подъемом грунтовых вод на застроенных территориях. Осушение и дренаж оснований применяются самостоятельно или в комплексе с активными способами защиты от де­формаций (усиление фундаментов, замена или укрепление надземных ) конструкций и др.).

При решении вопросов защиты оснований от воздействия грунтовых вод обычно осуществляют мероприятия, которые условно можно разбить на три группы, каждая из которых проводится с определенной целью.

-Первая группа имеет цель полностью прекратить доступ воды на за­строенную территорию. В этом случае устраивают нагорные канавы и кю­веты, водоперехватывающие и отводящие лотки, дренажные траншеи или засыпки с отводящими дренажными трубами, противофильтрационные завесы и др. Сюда же относятся мероприятия по отводу поверхностных вод, осуществляемому путем вертикальной планировки и устройства ливневой канализации.

-Вторая группа водозащитных мероприятий предназначается для от­вода поступающей на территорию воды от построенных на ней сооруже­ний. В этом случае устраивают окольцовывающие (кольцевые) дренажи в виде траншей с уложенными в них дренами, заполненных дренажным материалом, дренажные завесы с самотечным отводом воды или с прину­дительной откачкой, сеть откачных скважин, локальные противофильт­рационные завесы и т.п.

-Третья группа рассматриваемых мероприятий осуществляется для понижения уровня грунтовых вод под сооружением. В этом случае уст­раивают пластовый дренаж с активной откачкой, водопонизительные (поглощающие или откачные) скважины, лучевой дренаж и пр.

Читайте также:  Буронабивной фундамент с ростверком

При устройстве трубчатых горизонтальных дренажей используют керамические или асбестоцементные трубы, а при глубине заложения дрен свыше 4,5 м — бетонные и железобетонные. Их укладывают в тран­шеи на слой щебеночной подготовки и обсыпают сначала гравием, а затем песком (по принципу обратного фильтра) и закрывают сверху хорошо уплотненным грунтом. Грунтовые воды поступают в трубы через стыко­вые зазоры в 10—20 мм, открытые в верхней части на две трети внутрен­него диаметра по высоте (нижняя треть заделывается просмоленной пак­лей), или специально устраиваемые круглые или щелевые водоприемные отверстия.

Горизонтальные скважины устраивают путем забуривания их в осу­шаемый пласт или проходки из специальных колодцев (шахт) расходя­щихся скважин-лучей, в которых устанавливают фильтровальные трубы- дрены. Горизонтальные лучи могут выполняться значительной длины (до 50—100 м) поэтому водозахватная способность лучевых дренажей очень высока [37, с.146—153]. Их применение особенно эффективно для защиты от подтопления оснований существующих зданий и соору­жений.

УСИЛЕНИЕ И РЕКОНСТРУКЦИЯ ФУНДАМЕНТОВ МЕЛКОГО ЗАЛОЖЕНИЯ

Классификация методов усиления

Выбор метода усиления и реконструкции фундаментов мелкого заложения (как столбчатых, так и ленточных) зависит от причин, вызывающих необходимость такого усиления, конструктивных особенностей существующих фундаментов и инженерно-геологических условий строительной площадки.

Известно, что проектирование усиления фундаментов почти всегда сложнее проектирования новых конструкций. Это объясняется тем, что в каждом случае усиления приходится считаться с условиями эксплуатации объекта, со стесненными условиями работы, с разнообразием проявления деформаций зданий и сооружений и др.

Применяемые в настоящее время методы усиления и реконструкции фундаментов мелкого заложения можно классифицировать в зависимости от конструктивно-технологических способов их выполнения:

· Усиление Частичная замена кладки фундаментов.

· Устройство обойм без уширения подошвы

· Усиление вдавливаемыми, винтовыми сваями

· Пересадка на выносные фундаменты.

· Подведение свай под подошву фундамента

· Усиление буронабивными сваями.

· Усиление конструкциями, возводимыми способом “стена в грунте”

· Усиление фундаментов зданий и сооружений опускными колодцами.

· Переустройство столбчатых фундаментов в ленточные основания

На эти способы большое влияние оказывают условия, в которых нахо­дятся фундаменты: степень их разрушения, величины нагрузок, переда­ваемых на них, особенности конструктивной схемы здания или соору­жения, инженерно-геологические и гидрогеологические условия.

Работы по предотвращению развития аварийных деформаций домов включают усиление надземных и подземных конструкций зданий, фунда­ментов, а иногда и укрепление оснований. Возможны различные сочетания конструктивных мероприятий.

Ремонт фундаментов, усиление их обоймами и подведением конструктивных элементов.

Фундаменты промышленных, жилых и гражданских зданий, построен­ных в первой половине XX века, как правило, выложены из бутового кам­ня, бутобетонной кладки и сравнительно редко из пережженного красного кирпича — железняка. Под влиянием грунтовых вод, агрессивных сред, температурных и других воздействий материал фундаментов с течением времени теряет свою прочность и становится легко разрушаемым. Дли­тельное увлажнение бутового камня, в особенности из слабых извест­няковых пород, приводит к образованию глубоких каверн, снижению несущей способности и интенсивному разрушению кладки. В бутовой кладке чаще всего разрушается материал швов. Под влиянием коррозии разрушаются также бетонные и железобетонные фундаменты.

Для восстановления прочности кладки используют цементацию. Це­ментация производится путем нагнетания в пустоты фундамента через инъекционные трубки цементного раствора консистенции от 1:1 до 1:2 и более под давлением 0,2-1 МПа. Иногда боковую поверхность фунда­мента перед цементацией покрывают цементной штукатуркой. Цемента­цию производят после засыпки и уплотнения грунта в предварительно разработанных (но условиям технологии установки инъекционных тру­бок) траншеях с противоположных сторон фундамента.

При незначительных повреждениях фундамента на отдельных захват­ках в шахматном порядке через 0,5 м в кладку заделываются анкерные штыри, к которым прикрепляется арматурная сетка, и устраивается ру­башка. Рубашка может быть выполнена из раствора на крупном песке методом штукатурки или торкретирования, а также пневмонабрызгом бетона или укладкой его в опалубку. Вместо анкерных штырей иногда лучше пробивать в кладке отверстия через 1,5-2 м и пропускать балки.

Если цементацию провести затруднительно, то кладку можно усилить бетонными или железобетонными обоймами на всю высоту фундамента или его часть. В ленточных фундаментах противоположные стенки обоймы в отдельных случаях крепят одна к другой анкерами из арматурной стали и поперечными балками. Иногда обоймы устраивают с предварительной установкой в них инъекционных труб для последующей цементации. В этом случае в процессе цементации обоймы препятствуют вытеканию раствора из фундамента и поступлению его в грунт, что позволяет создать в теле фундамента большое давление, которое способствует лучшему про­никанию раствора внутрь кладки. Применение этого способа особенно целесообразно при цементации бутовых стен подвалов, так как обойма препятствует поступлению раствора внутрь помещения.

В последнее время для укрепления оснований под существующими зданиями применяют специальные грунтоцементные сваи, которые устра­ивают без извлечения грунта на земную поверхность путем перемешивания его с вяжущим материалом в пробуриваемой скважине.

Су­щество технологии устройства илоцементных и грунтоцементных свай заключается в том, что рабочий орган буровой штанги, снабженный как основными (режуще-уплотняющими), так и дополнительными (пере­мешивающими) лопастями, вращаясь, погружается в грунт, который рыхлит и одновременно перемешивает с подаваемым через полый кор­пус штанги закрепляемым материалом (обычно суспензией). При извле­чении рабочего органа, осуществляемом обратным вращением, смесь грунта с цементом дополнительно перемешивается и уплотняется зад­ними гранями основных лопастей.

Представляет интерес применяемый в Японии способ укрепления оснований путем устройства грунтоцементных свай. Спо­соб основан на разрушении грунта с помощью гидравлических струй вы­сокого давления при применении гидромонитора специальной конструк­ции, который обеспечивает раздельную подачу воды, воздуха и цемент­ного раствора. Кроме водяных струй, могут использоваться струи из це­ментной суспензии. В этом случае необходимость в подаче воздуха от­падает и конструкция гидромонитора упрощается.

Компания Ростайп эффективно применяет существующие и новые решения для усиления фундаментов.

Варианты их усиления можно посмотреть здесь

Технология изготовления буронабивных свай с монолитным ростверком

Технология буронабивных свай с ростверком достаточно часто применяется в частном строительстве. Установка и изготовление особенно необходимы при строительстве на слабых грунтах. Буронабивной фундамент также сможет выручить при высоком расположении уровня грунтовых вод. Но в этом случае на время выполнения строительных работ потребуется предусмотреть мероприятия по водопонижению. В противном случае бурение скважин под фундаменты станет невозможным.

Особенности

Технология предусматривает наличие отдельно стоящих опор и связующего элемента – ростверка. Глубина заложения свай зависит от геологических условий на участке и конструктивных особенностей здания. Бурение скважин на большое расстояние позволяет увеличить площадь соприкосновения опоры здания с грунтом. За счет этого увеличивается трение. Такие фундаменты способны выдерживать большие нагрузки.

Схема устройства

Устройство буронабивных свай обладает одним серьезным недостатком: все опоры работают по отдельности. Такой вариант увеличивает вероятность неравномерных осадок, которые опасны практически для всех видов зданий. Чтобы предотвратить разрушение стен, предусматривают железобетонный ленточный ростверк. Его армирование позволяет хорошо воспринимать изгибающие нагрузки и объединять все опоры в один фундамент. Технология изготовления ростверка может быть различной в зависимости от геологических условий.

Преимущества

Бурение скважин и установка в них свай позволяет добиться сразу нескольких положительных результатов:

  • Высокая несущая способность. Буронабивной фундамент с ростверком под кирпичный дом прекрасно справляется со своей задачей. Основание хорошо воспринимает нагрузки даже от массивного здания. Обязательным условием становится гидроизоляция между ленточным элементом и стенами здания. Так удается уберечь от разрушения разные по свойствам материалы.
  • Бурение скважин и заливка фундамента не оказывает разрушительного воздействия на соседние постройки. Можно проводить строительные работы даже вблизи от существующих зданий.
  • Установка возможна при сложных геологических условиях. Также железобетонные опоры подойдут при расположении в земле существующих инженерных коммуникаций.
  • Технология проста и предполагает минимальные трудовые затраты на разработку грунта. Бурение скважин позволяет избежать необходимости отрывать котлован или траншеи.
  • Фундамент на буронабивных сваях изготавливается на строительной площадке. Нет необходимости в большегрузной технике или специальных устройствах. Для увеличения скорости работ часто нанимают бетононасос.

Свайный фундамент с монолитным ростверком изготавливается в несколько этапов.

Подготовка к началу работ

Перед тем, как изготовить ростверковый фундамент своими руками, необходимо выполнить геологические исследования и запроектировать опорную часть здания. Можно заказать полноценные исследования, но стоить это будет достаточно дорого. При возведении частного дома определить показатели грунта можно самостоятельно. Для этого отрывают шурфы (ямы) или применяют бурение скважин. Почву разрабатывают на глубину на 50 см ниже, чем проектируемая отметка подошвы фундамента. Зная тип и характеристики грунта, можно будет точно рассчитать шаг и армирование свай и ростверка. Без лишнего запаса. А это в свою очередь снизит общие затраты на фундамент.

Результатом данного этапа должны стать известными:

  • типы грунтов на участке;
  • уровень расположения грунтовых вод;
  • водонасыщенность почвы.

От влажности грунта и уровня расположения влаги будет зависеть, какая гидроизоляция необходима фундаменту:

Простая гидроизоляция – рубероид – применяется на сравнительно сухих грунтах

Гидроизоляция пластиковыми трубами – применяется при высокой влажности грунтов

На основании полученных данных проектируют фундамент. Процесс здесь заключается в подборе следующих характеристик:

  • глубина заложения свай;
  • их сечение;
  • расстояние между сваями;
  • сечение ростверка;
  • армирование свай и ростверка.

Лучше, если работу выполнит опытный проектировщик. При самостоятельном назначении отметки заложения и прочих характеристик, необходимо тщательно изучить информацию по теме и нормативную документацию.

Проводят два расчета:

  1. Расчет свай. Железобетонные элементы рассчитываются на сжимающие нагрузки. По причине того, что бетон хорошо работает на такие усилия, мощное армирование не потребуется. Расчетом назначается глубина заложения опор, сечение и шаг.
  2. Расчет ростверка. Ленточный элемент рассчитывается как многопролетная балка. Но важно учитывать условия работы: лежит лента на земле или висит в воздухе. При проведении расчетов необходимо назначить сечение и армирование.

На этапе проектирования необходимо не только назначить армирование, но и класс бетона. Для разных элементов часто используют разные материалы:

  • для свай достаточно будет бетона класса В15–В20;
  • для ростверка необходимо использовать материал не ниже класса В20.

Вот пример рассчитанного фундамента с подобранными сечениями арматуры и класса бетона.

После выбора всех параметров фундамента, можно приступать к их изготовлению.

Разметка участка

Свайный фундамент с монолитным ростверком начинают строить с выноса расположения опор на местность. Сначала снимают плодородный слой почвы. Для того чтобы разметка не помешала земляным работам, необходимо изготовить обноску.

Обноска изготавливается обычно из дерева. Для ее установки потребуются стойки и перемычки. Устанавливают элемент по периметру здания на некотором расстоянии. Важно, чтобы можно было без препятствий выполнить бурение скважин.

В доски обноски забивают гвозди, к которым будет привязываться шнур, обозначающий оси здания. При строительстве обноски важно контролировать перпендикулярность и параллельность линий. Рекомендуется изучить метод треугольника, которым часто пользуются строители.

После завершения разметки можно приступать к следующим этапам.

Бурение скважин, армирование и заливка свай

Важно отметить, что свайно-ростверковый фундамент под деревянный дом и свайно-ростверковый фундамент под газобетон, например, возводятся практически одинаково. Отличия заключаются только в следующих характеристиках:

  • шаг свай;
  • их сечение;
  • армирование опор и ростверка;
  • сечение ростверка.

Технология же возведения не имеет существенных отличий. Свайно-ростверковый фундамент под деревянный дом будет менее мощным, чем под кирпич или бетон. Это вызвано тем, что при строительстве используются менее массивные материалы для стен и перекрытий. Все нагрузки должны быть заранее учтены в расчете.

Схема устройства буронабивного фундамента

Бурение скважин под заливку выполняется по разметке, описанной на прошлом этапе. Глубина заложения должна быть назначена ранее расчетом.
В пробуренную скважину устанавливают опалубку и армирование. Работа выполняется методом вдавливания. После того, как буром достигнута глубина заложения, необходимо изъять со дна скважины рыхлый грунт. Опорную часть основания трамбуют, после чего укладывают подушку из крупного или среднего песка. Толщина подушки назначается от 30 до 50 см. Она должна учитываться, когда назначается глубина заложения и отметка бурения.

Установив армирование, можно приступать к заливке бетонной смеси. Для удобства и увеличения скорости работ рекомендуется арендовать бетононасос. Если глубина заложения небольшая (как и объем работ), укладку бетона можно выполнять вручную.

Буронабивной фундамент своими руками (каждая опора) должна заливаться за один прием. Только так можно обеспечить целостность элемента.

Ленточный ростверк

Технология заливки ростверка немного сложнее, чем свай. Это вызвано особенностями работы конструкции. Работы по его изготовлению включают в себя следующие этапы:

  • установка опалубки;
  • установка арматурных каркасов;
  • заливка бетона, желательно за один раз;
  • вертикальная гидроизоляция;
  • горизонтальная гидроизоляция.

Отметка заложения ростверка может быть различной.

При залегании на участке крупнообломочных грунтов или песков средней и крупной фракции, можно опирать ленточный ростверк непосредственно на землю.

При залегании на участке пучинистых почв (глина, суглинок, супесь) придется предусмотреть демпфирующую прослойку. Она не даст грунту повредить ростверк при морозном пучении. Отметка заложения в этом случае назначается выше поверхности земли на 10–15 см.

Устройство опалубки ростверка

Для обеспечения зазора можно использовать песчаную подушку, которая после застывания вынимается из-под конструкции. Также используют полистирол, его вынимать после завершения работ не нужно. При подборе заложения используют данные, полученные на этапе геологических исследований.

Вязка арматуры: важно связать выпуски арматуры из свай с каркасом ростверка

Буронабивной фундамент своими руками нуждается в такой защите как гидроизоляция. Вертикальная позволит защитить бетон ростверка от негативных влияний окружающей среды. Гидроизоляция такого типа обычно устраивается из обмазочных материалов.

Горизонтальная гидроизоляция ростверка

Горизонтальная гидроизоляция необходима для разделения материалов с разными характеристиками. Ленточный ростверк в этом случае покрывается несколькими слоями рулонных материалов. Гидроизоляция позволяет предотвратить появление плесени и грибка при соприкосновении разных по свойствам материалов. Гидроизоляция необходима при кладке кирпичных стен на бетон, а также кладке стен из дерева и легких бетонов.

Свайно ростверковый фундамент своими руками прослужит долго, но для этого необходимо грамотно подобрать материалы, соблюдать технологию. Важным элементом обеспечения долговечности становится гидроизоляция. Особенно важно грамотно изготовить ленточный ростверк, который свяжет все опоры в единую систему.

Технология строительства буронабивных свай с ростверком

Выбор типа фундамента зависит от множества факторов. Буронабивные сваи с ростверком являются одним из вариантов опоры для частного здания. Чтобы определиться, в каких случаях их можно применять, необходимо подробно разобраться с технологией их устройства.

Что такое буронабивной фундамент

Устройство свайно-росверкового буронабивного фундамента предполагает, что сначала в земле выполняют бурение скважин, в которые вводится элементы каркаса. Это могут быть стальные, пластиковые, асбестовые трубы достаточно большого диаметра. После введения в грунт труб технология предусматривает армирование и заливку монолитного заполнения.

Помимо этого устройство свайного основания может выполняться другим способом. Так же как и в первом случае бурятся ямы. В них укладывают арматурные пространственные каркасы и заливаются бетоном.

Такая технология имеет несколько преимуществ:

  • высокая несущая способность;
  • отсутствие вибрации и воздействия на окружающие знания, как это бывает в случае забивного фундамента;
  • возможность использования при сложных геологических условиях;
  • если в земле располагаются инженерные коммуникации, разработка грунта под ленточный фундамент становится невозможной, но для свайного основания такие условия не страшны;
  • нет необходимости заранее заказывать на заводах элементы конструкции;
  • минимальные трудозатраты на разработку грунта;
  • простая технология;
  • изготовление выполняется непосредственно на строительной площадке, поэтому нет необходимости в затратах на доставку крупногабаритных элементов.

Схема буронабивного фундамента с ростверком.

Устройство свайно-росверкового буронабивного фундамента способно обеспечить высокую несущую способность, что позволяет использовать его для частных зданий из любых материалов.

Подготовительный этап

Перед началом строительства необходимо провести предварительные исследования и расчеты. Для вычисления потребуется знать тип грунта и его характеристики. При проектировании крупных объектов выполняют полноценное инженерно-геологическое исследование. Если необходимо выяснить характеристики для индивидуального дома, работу можно сделать самостоятельно. При изучении грунта необходимо обращать внимание на:

  • тип почвы (в дальнейшем он поможет определить прочность грунта основания);
  • уровень расположения грунтовых вод.

Для более полноценного изучения темы рекомендуется ознакомиться с нормативными документами:

  • СП «Инженерно-геологические изыскания для строительства». Здесь приведены общие положения по проведению мероприятий. Для непрофессионального строителя здесь многое может быть непонятно.
  • ГОСТ «Грунты. Классификация». Этот документ более понятен. Здесь приведена классификация различных оснований и большое количество терминов и определений по теме геологических характеристик грунтов. С этим нормативным документом рекомендуется ознакомиться даже при строительстве небольшого здания.
  • СП «Свайные фундаменты». В пункте 5 приведены требования к инженерно-геологическим изысканиям для свай.
Читайте также:  Ленточный фундамент своими руками

При возведении фундаментов рекомендуется проводить испытания в нескольких точках, расположенных под пятном застройки. При этом заглубление принимается на 50 см ниже проектируемой отметки подошвы свайного фундамента. Технология предполагает обязательное исследование почвы в самой нижней части участка. Остальные скважины или шурфы располагаются равномерно.

После изучения характеристик грунта приступают к расчетам. Расчет буронабивных свай выполняется как для железобетонных сжимаемых конструкций. Ростверк работает как многопролетная балка. Расчеты многопролетных элементов вручную не выполняются, поскольку они очень сложны. Для свай и для ростверка вычисления проводят по двум группам предельных состояний (ГПС):

  • 1 ГПС — расчет по прочности. СП «бетонные и железобетонные конструкции», пункт 6.1 — общие положения, пункт 6.2 — расчет.
  • 2 ГПС — расчет по жесткости. СП «бетонные и железобетонные конструкции», пункты 6.3-6.5. Расчет по жесткости предусматривает вычисления по деформациям, появлению и раскрытию трещин. Чаще всего проблемы с этой группой расчетов возникает у изгибаемых конструкций. При устройстве свайно-росверкового фундамента, конструкцией, работающей на изгиб, является обвязка (ростверк).

Помимо приведенного выше СП для расчета нужно изучить еще два нормативных документа:

  • СП «Нагрузки и воздействия». Регламентирует нагрузки, которые нужно учесть при расчете, коэффициенты надежности к ним.
  • СП «Строительная климатология». По этому нормативному документу назначается снеговой район участка строительства (по снеговому району в СП «Нагрузки и воздействия» смотрят массу снегового покрова) и глубина промерзания грунта, от которой зависит глубина заложения.
  • СП «Свайные фундаменты». Пункт 7 — указания по расчету свайных фундаментов.

После завершения этого этапа должно быть решено:

  • длина свай;
  • их сечение;
  • количество и диаметр арматуры;
  • количество и расположение свай.

Завершив подготовку, приступают к строительству. Здесь также выделяют несколько этапов:

  1. разметка расположения фундамента на местности;
  2. монтаж свай;
  3. монтаж ростверка.

Разметка участка

Чтобы вынести расположение свай с чертежей и эскизов на местность, монтируют обноску из досок. Обноска представляет собой вертикальные колышки, соединенные горизонтальной рейкой. На рейке отмечают расположение элементов фундамента, в эту точку забивают гвозди. На гвозди натягивают разметочный шнур. В итоге получается сетка из параллельных и перпендикулярных шнуров, которые обозначают оси здания или границы конструкций. Важно располагать конструкцию обноски на некотором расстоянии от будущего здания, чтобы она не мешала рабочим и не была повреждена строительной техникой.

Чтобы грамотно выполнить разметку свайного поля, необходимо руководствоваться СП «Инженерно-геодезические изыскания для строительства». Требования по выносу осей на участок приведены в пункте 9.

Бурение, армирование и заливка

Перед разметкой фундаментов срезают растительный слой почвы, который составляет примерно 10-20 см, иногда и все 50 см. После этого начинают разрабатывать скважины для заливки бетона. Как уже говорилось ранее, есть два варианта изготовления буронабивных свай:

  • вдавливание в пробуренную лунку опалубки (чаще труб) и армирование с последующей заливкой бетоном;
  • бурение ям, установка арматурных каркасов и заливка бетоном (без опалубки).

Бурение ям под сваи мотобуром.

После завершения скважины, с ее дна изымается рыхлый грунт. Основание тщательно трамбуют, а после этого укладывают песчаную подушку толщиной примерно 30-50 см (зависит от характеристик грунта). Песок можно использовать только средней или крупной фракции.

Расширение внизу делается специальным буром, так называемая технология ТИСЭ.

Бетон для свайного фундамента можно использовать не ниже класса В7,5 (марка М100). Бетоны от В7,5 до В15 относят к так называемым «тощим» составам. Эти материалы можно применять для небольших построек. Чаще всего для фундаментов используется класс бетона до В25. Более прочный материал использовать можно, но экономически не обосновано для частных домов, т.к. запас прочности при этом сильно превышает нагрузки от здания.

Арматурный каркас состоит минимум из 4 веток арматуры.

Арматура закладывается по расчету. Чаще всего диаметр рабочих стержней для частных домов находится в пределах 12-16 мм. Класс армирования — А400 (Аlll). Более подробные требования к материалам для возведения железобетонных конструкций приведены в СП «Железобетонные конструкции» в редакции от 2012 года, в пунктах 11.1, 11.2, 11.4 и пункте 6. Отметим, что минимальное число вертикальных стержней равно 4.

Возведение ростверка

Чтобы обеспечить совместную работу отдельных элементов фундамента, по их обрезу выполняют обвязку. Такая обвязка называется ростверком. Для буронабивных свай логичным решением станет заливка монолитного ростверка из железобетона. В этом случае технология в чем-то схожа с заливкой незаглубленного ленточного фундамента.

Общая площадь сечения арматурных прутов должна составлять 2-3% от площади сечения ленты. Требования к материалам приводятся в том же СП «Бетонные и железобетонные конструкции». Арматура для ростверка — А400, так же как и для свай. Разница в классе бетона. Ростверк — изгибаемый элемент, поэтому для его изготовления нельзя применять «тощие» бетоны, иначе появятся трещины.

Заливка бетонной смеси выполняется в заранее подготовленную опалубку, которая изготавливается из досок. Требования к опалубке приведены в СП «Бетонные и железобетонные конструкции», пункт 11.3. После установки опалубки фиксируют арматуру. Расстояние между опалубкой и любым стержнем должно составлять не менее 2-3 см, это обеспечит защитный слой из бетона, который предотвратит коррозию стали. Каркасы изготавливают двумя способами:

  • сваркой прутов;
  • связыванием прутов с помощью вязальной проволоки.

Снизу виден зазор, который необходим для предотвращения морозного пучения на ростверк.

Второй вариант трудоемкий, но и более надежный. Даже если принято решение использовать сварку, на углах здания, пруты все равно связывают. При строительстве между ростверком и землей предусматривают зазор от 5-10 см. Он необходим для предотвращения повреждений при вспучивании грунта в зимний период, можно уложить под ростверк пенопласт низкой плотности.

Зазор защищается от осыпания грунта листами плоского шифера.

Перед тем, как приступать к работе, нужно тщательно изучить хотя бы основную документацию по теме. Из приведенных в статье нормативных документов, самыми важными при строительстве буронабивного фундамента являются:

  • СП «Свайные фундаменты»;
  • СП «Бетонные и железобетонные конструкции».

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Буронабивной фундамент с ростверком

Не всегда при возведении дома есть возможность заложить под него традиционные фундаментные конструкции: ленту, плиту или столбы. Потому что не каждый грунт может выдержать большую массу сооружаемого здания. Поэтому сегодня наша компания предлагает новые технологии, с помощью которых можно гарантировать высокое качество строительства зданий. Одна из них – буронабивные сваи.

Специалисты ООО «ПСК Основания и Фундаменты» имеют 20-летний опыт устройства буронабивных свай с ростверком.

По сути, буронабивные сваи – это забитые или вкрученные в грунт трубы, заливаемые бетонным раствором. Чтобы равномерно распределить нагрузки, на них укладывают ростверк. Ростверк на буронабивных сваях – это ленточный фундамент, упирающийся своей нижней плоскостью в верхние торцы свай.

Преимущества фундамента на буронабивных сваях

Надо отдать должное этой разновидности фундаментов, потому что она обладает приличным количеством достоинств.

  • Высокая прочность каждой сваи. Данный параметр зависит от сечения конструкции, но в целом один элемент выдерживает до 1,5 тонны веса.
  • Возможность закладки под любые здания и сооружения на любых видах участков.
  • Низкая себестоимость.
  • Быстрота проведения монтажных работ.
  • Сохраняется ландшафт.

Нужен фундамент из буронабивных свай? обращайтесь в нашу компанию – рассчитаем и установим!

Опыт работы – более 10 лет.

Где используются сваи с ростверком

Свое применение буронабивные сваи с ростверком нашли при различных строительных ситуациях.

  • Чаще эту фундаментную конструкцию используют на мягких подвижных грунтах, потому что динамические нагрузки от смещения грунта распространяются на отдельные элементы, а не на фундамент в целом.
  • Если рельеф местности сложный: с уклоном, с обрывом, неравномерный.
  • На участках рядом с водоемами, где присутствует возможность подтопления.
  • В регионах с повышенным уровнем грунтовых вод.
  • В районах, где твердые грунты залегают слишком глубоко.

Виды ростверков

Ростверк является объединяющей сваи конструкцией, основное предназначение которой равномерно распределить нагрузки от дома на фундаментные опоры. При этом необходимо учитывать, что сами сваи выставляются в процессе сооружения строго по вертикали, ростверк по горизонтали.

В строительстве домов на буронабивных сваях используются разные ростверковые конструкции, которые отличаются друг от друга материалами, а также местом расположения элемента. По материалам разделение такое:

  • Монолитный ростверк. Его заливают из бетонного раствора с возведением опалубки и укладки в нее армирующего каркаса.

  • Сборный. Для этого обычно используют или металлические профили, или деревянные брусы. Вариант – сложный в производстве монтажных работ и низкой прочности соединения элементов фундамента.
  • Сборно-монолитный. В частном домостроении не используется, потому что связан со сложностью изготовления элементов конструкции, которые соединяются между собой при помощи замков, шпонок и других деталей.

По способу расположения ростверка эта разновидность фундамента делится на два типа:

  • с висячим ростверком;
  • с заглубленным.

В первом случае горизонтальная конструкция не касается земли, во втором она частично погружена в грунт.

Этапы строительства фундамента на буронабивных сваях с ростверком

Строительство буронабивного фундамента с ростверком надо начинать с расчетов, при которых определяется количество свай и их диаметр. Оба параметра будут зависеть в основном от веса дома. Определить его сложно, ведь придется учитывать большое количество используемых для его возведения стройматериалов. Но на практике строители пользуются упрощенным расчетом, где в основном учитывается вес стен, который затем умножается на коэффициент 1,3.

Расчеты

Чтобы определиться с массой стен дома, надо учитывать, из каких материалов они возводились. Потому что у каждого материала своя плотность. Эта величина постоянная, так что остается лишь определиться с объемом несущих стеновых конструкций. Сама стена в сечение по вертикали – это прямоугольник, площадь которой определяется по формуле: S = a x b, где «a» и «b» – это высота стены и ее ширина. По проекту здания это определить несложно.

Теперь полученное значение площади надо умножить на длину стены. Для этого в проекте замеряются все длины стен в независимости от их расположения. То есть, это и внешние, и внутренние. Полученное от перемножения значение и есть общий объем всех стен. Теперь его надо умножить на плотность материала, из которого дом планируется возводить. Вот несколько позиций по основным стройматериалам.

МатериалПлотность, кг/м³
Кирпичи1800
Бетон2400
Пенобетон300-1400
Брус сосновый500

К примеру, если дом сооружается из кирпича, а его размерные габариты: высота 4 м, длина всех стен 100 м, ширина кладки в полтора кирпича, то есть 40 см, то можно подсчитать примерный вес дома.

  • 4х100х0,4=160 м³ – это общий объем стен.
  • 160х1800=288000 кг или 288 тонн – это вес стен дома.

Теперь последнее значение надо умножить на повышающий коэффициент: 288000х1,3=374400 кг. Это полный вес дома, который берется при расчете буронабивного фундамента с ростверком.

Расчет веса ростверка

К полученному значению надо еще приплюсовать вес самого ростверка. Обычно у него квадратное сечение со стороной, равной ширине стены. В нашем случае это 40 см. Длина сооружения будет равна длине внешних стен, поэтому их придется замерить по проекту. Пусть это будет 50 м. Если ростверк заливается из бетона, тогда берем для него плотность из выше обозначенной таблицы. Теперь проводим следующие математические выкладки:

  • 0,4х0,4х50=8 м³ – объем ростверка;
  • 8х2400=19200 кг – масса ростверка.

Теперь вес дома и ростверка надо сложить: 374400+19200=393600 кг, почти 400 тонн.

Расчет несущей способности сваи

У каждой марки бетона есть своя прочность на сжатие, которая обозначается в маркировке материала. К примеру, бетон М400 – у него прочность составляет 400 кгс/см². Если для устройства буронабивного фундамента с ростверком взять для примера сваю диаметром 30 см, залитую раствором М400, то несложно подсчитать, какой вес она может выдержать.

Для этого надо найти площадь сечения сваи, которая собой представляет круг. Фот формула: S=πD²/4, где π – Архимедово число, равное 3,14. Подставляем числовые значения:

Теперь надо умножить полученную площадь на прочность бетона: 706х400=282400 кг. Это и есть максимальная нагрузка, которую может выдержать одна свая. Для нашего примера с расчетом веса дома в 400 тонн, потребуется всего лишь 2 сваи, и их хватит с запасом. Понятно, что это всего лишь пример, он просто показывает, как надо проводить расчеты. Но в данном конкретном случае можно выйти из положения, уменьшив диаметр свай и понизив марку бетона.

Расчет буронабивного фундамента с ростверком на этом не заканчивается, потому что кроме несущей способности бетона надо учесть и несущую способность грунта.

Расчет количества свай

Для его проведения потребуются значения несущей способности грунта, при которых он не поддается усадке.

Тип грунтаНесущая способность, кгс/см²
Мелкий песок3
Средней фракции3,5
Крупный4,5
Глина твердая6
Глина пластичная3
Щебень, гравий, галька6

Если свая имеет диаметр 30 см, то его площадь равна 706 см². Сооружается она на песчаном грунте с крупным песком, у которого несущая способность 4,5 кгс/м². Перемножаем между собой эти показатели: 706х4,5=3177 кг, округляем до 3 тонн. Такой вес может выдержать свая, не продавливая под собой грунт. А значит, надо равномерно распределить нагрузку от дома на каждую сваю, то есть, надо рассчитать их количество. Это делается так: 400/3=133 штуки.

Обычно исходят от обратного. То есть, в проекте указывается количество опор, расстояние между буронабивными сваями в ростверке, а уже на основании всех остальных данных рассчитывается диаметр столбов. К примеру, в проекте указано, что под дом будет установлено 20 свай.

  • Рассчитываем несущую способность каждой: 400/20=20 тонн или 20000 кг.
  • Делим полученный результат на несущую способность грунта: 20000/4,5=4440 см² – это площадь сечения сваи.
  • Определяем по формуле площади круга диаметр: D= (4S/3,14)= (4×4440/3,14)=238 см, округляем до 240 см. Это и есть диаметр одной сваи.

Монтаж свайного фундамента с заглубленным ростверком

Существует три способа строительства фундамента на буронабивных сваях с ростверком.

  1. Сухой. Это когда в грунте делаются скважины без усиления их стенок. Эту технологию используют на устойчивых почвах.
  2. С использованием глинистого раствора, который формирует стенки скважины.
  3. С использование обсадной трубы, которую опускают в скважину, чтобы стенки последней не обвалились.

В подготовленную скважину опускается армирующий каркас, а затем она заполняется бетонным раствором.

Что касается технологии заливки буронабивного фундамента с ростверком заглубленным, то для его сооружения вместе со скважинами подготавливаются траншеи глубиною до полуметра, где ростверк будет заливаться. Они соединяют между собой готовые скважины. В принципе, сам процесс очень похож на сооружение ленточной конструкции:

  • в траншеи делается песчано-гравийная подсыпка;
  • монтируется вертикальная опалубка;
  • внутрь устанавливается армокаркас, которые проволокой соединяется с каркасом свай;
  • производится заливка бетона.

Кроме буронабивных мы изготавливаем буроинъекционные, буросекущие и бурокасательные сваи

Все работы – под ключ!

Монтаж свайного фундамента с висячим ростверком

Технология буронабивных свай с ростверком висячим ничем от предыдущей не отличается. Единственное дополнение – это усложненная конструкция опалубки, потому что ростверк будет располагаться на определенном расстоянии от поверхности грунта. А значит, под нижнюю его плоскость надо установить прочную основу. Это щиты опалубки, которые устанавливаются на подпорки: кирпичи, бетонные блоки, доски, уложенные друг на друга, брусы или металлические профили.

Устройство ростверка на буронабивных сваях – один из приемов соорудить ленточный или плитный фундамент на опорных столбах, которые закладываются ниже уровня промерзания грунта.

Самостоятельно проводить работы по возведению фундаментной конструкции не рекомендуется – слишком большой объем, плюс непростые расчеты. Поэтому рекомендуем обратиться к нам, в компанию ООО «ПСК Основания и Фундаменты». Специалисты компании точно рассчитают фундамент и проведут все требуемые работы.

Ссылка на основную публикацию